
CS 320
Computer Language Processing

Exercises: Week 4

March 19, 2025

Exercise 1 If L is a regular language, then the set of prefixes of words in L
is also a regular language. Given this fact, from a regular expression for L, we
should be able to obtain a regular expression for the set of all prefixes of words
in L as well.

We want to do this with a function prefixes that is recursive over the struc-
ture of the regular expression for L, i.e. of the form:

prefixes(ε) = ε

prefixes(a) = a | ε
prefixes(r | s) = prefixes(r) | prefixes(s)
prefixes(r · s) = . . .

prefixes(r∗) = . . .

prefixes(r+) = . . .

1. Complete the definition of prefixes above by filling in the missing cases.

2. Use this definition to find:

(a) prefixes(ab∗c)

(b) prefixes((a | bc)∗)

Exercise 2 Compute nullable, first, and follow for the non-terminals A and
B in the following grammar:

A ::= BAa

A ::=

B ::= bBc

B ::= AA

Remember to extend the language with an extra start production for the
computation of follow.

1

Exercise 3 Given the following grammar for arithmetic expressions:

S ::= Exp EOF

Exp ::= Exp2 Exp∗

Exp∗ ::= + Exp2 Exp∗

Exp∗ ::= − Exp2 Exp∗

Exp∗ ::=

Exp2 ::= Exp3 Exp2∗

Exp2∗ ::= ∗ Exp3 Exp2∗

Exp2∗ ::= / Exp3 Exp2∗

Exp2∗ ::=

Exp3 ::= num

Exp3 ::= (Exp)

1. Compute nullable, first, follow for each of the non-terminals in the gram-
mar.

2. Check if the grammar is LL(1). If not, modify the grammar to make it so.

3. Build the LL(1) parsing table for the grammar.

4. Using your parsing table, parse or attempt to parse (till error) the following
strings, assuming that num matches any natural number:

(a) (3 + 4) ∗ 5 EOF

(b) 2 + + EOF

(c) 2 EOF

(d) 2 ∗ 3 + 4 EOF

(e) 2 + 3 ∗ 4 EOF

Exercise 4 Argue that the following grammar is not LL(1). Produce an
equivalent LL(1) grammar.

E ::= num+ E | num− E

Exercise 5 Consider the following grammar:

S ::= S(S) | S[S] | () | []

Check whether the same transformation as the previous case can be ap-
plied to produce an LL(1) grammar. If not, argue why, and suggest a different
transformation.

2

