
Quiz
Compiler Construction, Fall 2010

Monday, December 20, 2010

Last Name :

First Name :

Exercise Points Achieved Points

1 10

2 10

3 20

4 20

5 40

Total 100

General notes about this quiz

• This is an open book examination. You are allowed to use any written material. You are
not allowed to use the notes of your neighbors.

• You have totally three hours.

• The points of the questions are not equal. It is advisable not to spend most of your time
on the questions with less grade.

1

Problem 1: Lexical Analysis (10 points)

The increment operator in C++ is ++ (in fact C++ means incrementing the language C).
Increment can be both prefix and suffix, so + + x and x + + effectively increase the value of x.
Consider the alphabet Σ = {+, x}. We want to generate all the valid expressions that can be
generated using these two symbols. The symbol + of the alphabet can be used in an increment
operator (x++), can be a binary operator (x+x) or a unary operator (+x). The lexical analyzer
returns the following classes of tokens:

1. PLUS: The binary or unary operator +

2. VAR: The variable x

3. INC: The increment operator ++

For example consider the following expressions and their corresponding tokenizing.

Expression Tokens

+x PLUS VAR

x + + VAR INC

x + x + x VAR PLUS VAR PLUS VAR

+ + x + + INC VAR INC

x + +x VAR PLUS PLUS VAR

x + + + x VAR INC PLUS VAR

x + + + +x VAR INC PLUS PLUS VAR

a) Determine for each row of the table if the tokenizing can be done by a longest matching
lexical analyzer or not. You can put a X or × beside each row in the table.
For the negative answer justify why the result cannot be generated by a longest matching
lexical analyzer.

b) Consider a restriction on the language which allows only three operands ++x, x++ and
x and only one operator, binary +. Design a lexical analyzer which can tokenize the
generated language by giving a deterministic finite automaton.

c) Do you need the longest match rule for the analyzer in part b?

2

Problem 2: Parsing (10 points)

Consider the following grammar on Σ = {⇒, ,, Int}. The symbol $ shows the end of file.

1 : S′ → S$
2 : S → T ⇒ S
3 : T → S,T
4 : T → Int

5 : S → Int

a) Compute the first and follow of the non-terminals S′, S and T .

b) Determine if there is an input for which there exist at least two different parse trees.

c) Assume that the input consists of exactly n tokens, i.e., the lexical analyzer returns exactly
n tokens before hitting the $. For each of the following items determine if they are possible
to occur during Earley parsing.

- (S → T• ⇒ S , 1)
- (T → S,T• , n− 1)

d) Make an equivalent grammar with minimal changes so that the grammar can be recognized
by an LL(1) parser.

3

Problem 3: Type Checking (20 points)

Consider the following piece of code. Determine if the code type-checks according to the rules
given in the lecture notes.

• If the code actually type checks then give the complete type derivation tree.

• If there is a type error in the program you should point out the place(s) on the tree in
which a type rule is broken.

The derivation tree should be complete and contain all the necessary details. The rules in the
tree should be followed from top to bottom without any hidden assumptions.

class A
class B extends A {
def func(a: List[A], b: List[B]): List[A] = b
}
val a: Array[A]
a(0) = new B
val b = a(0).func(a(1),a(3))

In the following some type rules are listed which may be useful for solving the problem. Note
that it may not be necessary to use all these rules in the solution of this problem and also you
may need to use some other rules to make the complete tree.

(x : T) ∈ Γ

Γ ` x : T

Γ ` x : Int Γ ` y : Int

Γ ` (x + y) : Int

Γ ` e1 : T1 · · ·Γ ` en : Tn Γ ` f : (T1 × · · · × Tn → T)

Γ ` f(e1, · · · , en) : T

Γ ` x : T0 Γ ` T0.m : T0 × T1 × · · ·Tn → T ∀i ∈ {1, · · · , n}.Γ ` ei : Ti

Γ ` x.m(e1, · · · , en) : T

(x, T) ∈ Γ Γ ` e : T

Γ ` (x = e) : void

T1 <: T ′
1 T2 <: T ′

2

T1 × T2 <: T ′
1 × T ′

2

T ′
1 <: T1 · · ·T ′

n <: Tn T <: T ′

(T1 × · · · × Tn → T) <: (T ′
1 × · · · × Tn → T ′)

T <: T ′
(for immutable collection)

collection[T] <: collection[T ′]

Γ ` a : Array[T] Γ ` i : Int

Γ ` a(i) : T

4

Problem 4: Code Generation (20 points)

Part I. The following code is generated by a compiler for the method foo.

a) What does the function compute on the input(s)?

b) Write one possible corresponding Scala method for which this code would be a correct
compilation.

0: iload 1
1: iconst 1
2: if icmpgt 5
3: iconst 1
4: ireturn
5: iload 1
6: aload 0
7: iload 1
8: iconst 1
9: isub
10: invokevirtual foo
11: imul
12: ireturn

Part II. Consider the high-level translation of the conditional statement using branch.

Jif (c) sThen else sElse K =
branch(c,nThen,nElse)

nThen: J sThen K
goto nAfter

nElse: J sElse K
nAfter:

Translate the loop statement and the conditional in the following code using the high-level
branch instruction. You do not need to translate the other instructions. Just leave them between
translation brackets J K. Assume that “for” is translated similar to “while”.

def insertionSort(a: Array[Int]): Array[Int] = {
var i: Int = 0
var temp: Int = 0
var result = a
for(k <− 1 until a.length){ // translate
temp = a(k)
i = k
while(i > 0 && temp < a(i − 1)) { // translate
a(i) = a(i−1)
i = i − 1
}
a(i) = temp
}
return result
}

5

Problem 5: Register Allocation (40 points)

MIPS is a well-known 32-bit register-based architecture. The CPU uses 32 registers of 32 bits.
Data can be loaded and stored from a memory, but we don’t care about memory instructions in
this problem. Consider the following set of instructions. In the MIPS assembly, when a name
starts with $, this usually means that it is a register. For a register $x, the notation R[x] denotes
its value.

Name Instruction Syntax Meaning

Branch if less than blt $rs, $rt,Label if(R[rs] < R[rt]) jump to Label

Branch if greater than bgt $rs, $rt,Label if(R[rs] > R[rt]) jump to Label

Branch on equal beq $s, $t,Label if(R[rs] == R[rt]) jump to Label

Load Immediate li $a, I load the 32-bit constant I to the register $a

Move move $rt, $rs R[rt]← R[rs]

Subtract sub $d, $s, $t $d = $s− $t

Add add $d, $s, $t $d = $s + $t

In this problem you are to implement a simple program using the given MIPS instructions. Note
that you are not allowed to use any other MIPS instruction that is not mentioned above and
you cannot invent your own instruction.

a) The function Fibonacci is defined recursively as the following.

fib(n) =


0 if n = 0
1 if n = 1
fib(n− 2) + fib(n− 1) if n ≥ 2

For example, we can compute the value fib(4) as the following.

fib(3) = fib(1) + fib(2) = 1 + fib(0) + fib(1) = 1 + 0 + 1 = 2.

Implement fib using the given MIPS instructions. For this purpose use a set of temporary
variables {$t0, · · · , $t31} instead of the actual registers. Assume that the value n is initially
in the temporary variable $t0 and the final result value should also be stored in $t0.

b) Build the control-flow graph.

c) Compute the set of live variables before and after each instruction.

d) Draw the interference graph and color it.

e) Show the generated code with assigned actual registers. Assume the actual MIPS registers
are {$r0, · · · , $r31}.

6

