Quiz 2
Compiler Construction, Fall 2014
Wednesday, December 10th, 2014

General notes about this quiz

Have your CAMIPRO card ready on the desk.

You are allowed to use any printed material (using standard fonts, no cursive or script
fonts) that you brought yourself to the exam. You are not allowed to use any notes that
were not typed-up. Also, you are not allowed to exchange notes or anything else with
other students taking the quiz.

Use separate sheets, for each question, to write your answers. No sheet of paper
should contain answer to two or more questions at the same time.

Make sure you write your name on each sheet of paper.
Use a permanent pen with dark ink.
It is advisable to do the questions you know best first.

You have in total 2 hours 50 minutes.

Exercise | Points
Total 0

Problem 1: Code Generation for Guarded Command Language
(30 points)

Edsger Dijkstra(1930 - 2002) proposed a language named the Guarded Command Language
which has two interesting constructs: a simultaneous assignment statement and a non-deterministic

loop statement. The simultaneous assignment statement has the form: xq, o, -+ ,x, := €1, €2, - €n,
where x;’s are variables and e;’s are expressions. The statement first evaluates the right-hand-
side expressions eq, - - - , e, in the same order and assigns the value of e; to the variable x;. The
non-deterministic loop statement has the form:
do
g1 —> 51
gn —> Snp
od
where g1, - , g, are guards i.e, boolean valued expressions and sy, - - - , s, are assignment state-

ments. The loop iterates as long as there is at least one guard that evaluates to true. In each
iteration, it non-deterministically chooses one guard, say g;, that evaluates to true and executes
the statement corresponding to the guard, namely s;. The loop exits if none of the guards eval-
uate to true. In addition to the above two statements, assume that the language has a boolean
expression of the form = > y, and an arithmetic expression of the form x —y, where x and y are
variables.

Figure 7?7 shows two programs written in the guarded command language. The program in
Figure ??(a) implements the Euclidean algorithm for computing GCD (greatest common divisor)
of two positive integers, and the program in Figure ?7(b) implements a bubble sort like algorithm
for sorting three number.

do do
X >y ->X := X-Yy X >y ->X,y,Z = y,X,Z
y > X —-> X,y :=Yy,X y >z ->Xx,y,Z2 := X,2,¥
od od

(a) (b)

Figure 1: (a) a program that computes GCD of positive integers, and (b) a program that sorts
three numbers

In this exercise, we will consider two deterministic implementations of the non-deterministic
loop statement.

Strategy 1: choosing the first true guard

In this strategy, we fix that the loop statement always chooses the first guard that evaluates to
true and executes the statement corresponding to it, similar to a pattern matching statement
in Scala. The loop exits when none of the guards evaluate to true. Note that in every iteration
the loop executes exactly one case.

a) [10 pts| Provide a destination passing style translation for the loop statement that imple-
ments the strategy 1. Use the branch function described in the lectures in your translation.
You need not show the definition of the branch function. Also use [s;] to denote the trans-
lation of a statement s;. You need not provide a translation for the statement s;.

[do

g1 —> 81
. =7
gn —> Sp

od] lafter

where, lafter is the label of the statement that should be executed when the loop exits.

b) [10 pts] Use the translation that you designed for the previous question, and the standard
translation for other statements in the language described in the lectures, to generate Java
byte code for the program shown in Figure ?7?(a) that computes the GCD of two numbers.
It suffices to show the final byte code generated for the program. It is not necessary to
show the intermediate steps.

For you reference, we have provided a list of byte code instructions that you may need for
this exercise at the end of this question.

Strategy 2: Round Robin

In this strategy, in each iteration, the loop must execute every case that evaluates to true in the
same order as they appear in the code. In other words, in every iteration, we first check if g;
evaluates to true, if it does we execute s1, then we check if go evaluates to true and execute so
if it does, and proceed similarly.

c) [10 pts| Provide a destination passing style translation for the loop statement that realizes
the strategy 2. Your translation must exit the loop immediately after finding that every
guard evaluates to false and should not perform any redundant evaluation of guards. As
before, use the branch function described in the lectures, and [s;] to denote the translation
of the statement [s;].

Java byte code instructions

iload_#x Loads the integer value of the local variable x on the stack.

iconst_x Loads the integer constant x on the stack.

istore_#x Stores the current value on top of the stack in the local
variable in x

iadd Pop two (integer) values from the stack, add them and put
the result back on the stack.

isub Pop two (integer) values from the stack, subtract them and
put the result back on the stack.

ifXX L Pop one value from the stack, compare it zero according to

the operator XX. If the condition is satisfied, jump to the
instruction given by label L. XX € { eq, lt, le, ne, gt, ge,
null, nonnull }

if icmpXX L | Pop two values from the stack and compare against each
other. Rest as above.

goto L Unconditional jump to instruction given by the label L.

Problem 2: Type Checking For Immutable Maps (50 points)

Consider a language that has only strings and maps. The keys of the maps are always strings
but their values could be strings or other maps. The syntax of the language and its types is
given by the following grammar:

— “strcons”
| let ident = expr in expr
| empty[T]
| put(expr,expr,expr)
| get(expr,expr)
— string | Map[string, T

In the above grammar, strcons is a set of string constants, ident is a set of identifiers. The
statement let id = ey in ey creates a new local variable id, initializes it to the result of e,
and evaluates the expression ey that may use the local variable id. Note that the scope of id is
restricted to eo. In other words, the let statement is equivalent to the scala code:

{ val id = e;; ez }. The functions empty, put and get are operations involving maps and
are described below:

e empty[T] creates an empty map from string to the type T

e put(ep, e, e3) takes a map e, a string es, and a value es, and returns a new map that is
same as e for all keys except for the key ey which is mapped to eg.

e get(ey, ez) takes a map e; and a string ey, and returns the value corresponding to the key
ez. If the key does not have a mapping in the map e;, the function raises a KeyNotFound
exception.

The following are some type rules for the language:

s € strcons
_— t empty|[T] : Map[string, T
F “s” : string

a) [10 pts] Give a set of type rules for the map operations put and get that is consistent
with the above description of put and get operations. For this part, you can assume that
throwing an exception is an acceptable outcome of an evaluation and need not treat it as
a crash or bad behaviour. You can also assume that the return type of get is the type of
the values of the map passed as the first argument.

Consider the following expression belonging to the language. We will refer to this expression as
E.

let m1 = put(empty[string],”x","z") in
let m2 = put(empty[Map|string,string]],"y", m1) in

let m3 = put(m2,”z" ,empty][string]) in
get(m3,"y")

b) [10 pts] Give a type rule for the let statement that is consistent with its description.
What is the type of the expression E under your type rules 7 Will the expression type
check if we change the body of the last let to get(get(m3, “y”), “2”) ?

Say we want to extend the type system so that expressions that type check do not throw a
KeyNotFound exception. For this purpose, we augment the type of maps with a set of keys that
the map must contain. Consider the following modification to the types of our language:

T — string| “strcons”
| Map[string, TS
S — {“strcoms”,---, “strcons”

If an expression is typed as Map[string, T'|{ “strl”, “str2”,-.. | “strn”}, it implies that the result
of the expression is a map from string to 7" and that it must have a mapping for the set of keys
{ “strl”, “str2”, ---, “strn” }. For example, the above extension allows us to type an expression
put(empty[string], “a”, “b”) as Map[string, string|{“a” }, which conveys that the result of the
expression is a map from string to string and also that it has a mapping for the key “a”.

c) [10 pts] Provide a sub-typing rule for the map type under this new extension.

777

Map[string,T7]|S; <: Map[string, T5|S

d) [20 pts] Adapt the type rules of the language to the extended types that store the keys of
the maps as a part of the type. You can assume that a sub-typing relation exist between
the map types. Your type rules should ensure that type correct expression can never throw
KeyNotFound Exception.

For example, in your type system, the expression get(put(empty[string], “a”, “b”), “c”)
should not type check, whereas get(put(empty[string], “a”, “b”), “a”) and the expression
E (shown above) should type check.

