Quiz
Compiler Construction, Fall 2011
Wednesday, December 21, 2011

Last Name :

First Name :

Exercise | Points | Achieved Points

20

25

20

20

25

O =] WD =

Total 110

General notes about this quiz

e This is an open book examination. You are allowed to use any written material. You are
not allowed to use the notes of your neighbors.

e You have totally 3 hours 45 minutes.
e [t is advisable to do the questions you know best first.

e 100 points already count as perfect score.

Problem 1: Lexical Analysis (20 points)

Consider the alphabet ¥ = { +, :} . Scala’s List object defines (among others) the following
operators:

Concat ++
Concat2 ++:
Prepend +:
Append :+
Add ::
AddList

a) Determine the tokenizing of the following strings using the longest-match rule.

b) Design a lexical analyzer which can tokenize the above language of operators by giving a
deterministic finite automaton and explain how it will use this automaton to tokenize the
following string. Make sure to show how your lexical analyzer will return the tokens by
name, i.e. it should not just accept or reject the input.

R N i s

Problem 2: Parsing (25 points)

Warm-up: Consider the following grammar:

S S% (1)
S — AAAA (2)
A—a (3)
A—FE (4)
FE —e (5)

a) Describe precisely the language defined by this grammar.

b) Give the Earley sets obtained by parsing the input “a”.

Implementing the Earley parsing algorithm: (Consider leaving this part for the end)

We now consider grammars whose starting non-terminal is S’ and in which the only rule involving
S’ is S’ — S$. We denote non-terminals by capital latin letters (like A), terminals by lower case
latin letters (like a), and strings of terminals and non-terminals by greek letters (like o).
Recall that when computing an Earley set as described in the course, an Early parser needs to
select an arbitrary item in the set and apply scanning, prediction, or completion to it. When
implementing an Earley parser, we need to decide how to make the choice of item to consider. If
we make an arbitrary choice we may select an item which has already been processed and hence
do useless computation.

Instead, it may be convenient to represent the Earley sets as linked lists. These lists can then
be used as work queues that prevent the needless processing of already processed items.
Consider an implementation of the Earley parsing algorithm that uses lists of items L; to rep-
resent the Early sets S;. Given a word zizs - - - x, the algorithm works as follows: First, L is
initialized to the list ([S" — ©5§,0]). The algorithm starts by computing Lo, then L;, then Lo,
and so on until L,,. To compute L;, ¢ € [1..n], the algorithm performs a single traversal of the
list L;, from head to tail. During the traversal of L;, for each element e of L;, the algorithm
performs Scanner(e, i) then Predictor(e, i) then Completer(e, i), as described below.

e Scanner(e, i): ife=[A— ---ea---,j] and z;1+1 = a then append [A — ---ae---] to the
list Li+1.
e Predictor(e, i): if e = [A — --- e B--- j|] and [B — eq,i] is not already in L;, then

append [B — eq,i] to L; for all items B — « in the grammar.

e Completer(e, i): if e =[A — ---o,j] then append [B — --- Ae--- k| to the list L; for
all items [B — ---eA--- k] in L;.

The algorithm accepts the word if and only if the list L,, contains the item [S’ — S$e,0] at
the end of the execution. Note that appending means inserting an element at the end of a list.
Hence this algorithm is different from the one described in the course because it specifies a
particular order in which to process items. Also note that the algorithm appends Earley items
to a list while it traverses it.

c) Give the Earley sets computed by the algorithm described above when parsing the input
“a”. Is the algorithm correct?

d) Is the algorithm correct if the grammar used has no nullable non-terminals?
e) Propose a fix to the algorithm.

Justify your answer in each case!

Problem 3: Type Checking (20 points)

Consider a language similar to the one used in the course on type checking (the precise definition
of the language does not matter).

We add a polymorphic type Option[T] to the language, where T' can be any existing type, and
a polymorphic map type Map[U, V] with get() and set() operations, where U and V' can be any
existing types. The only members of the Option[T| type are None and Some(t) for any t of
type T. Both Option and Map are immutable. We extend the expression syntax as follows:

expr — None (1)
expr — Some(expr) (2)
expr — new Mapltype,type]() (3)
expr — ident.get(expr) (4)
We extend the statement syntax as follows:
stmt — case expr of None => stmt | Some(ident) => stmt (5)
stmt — ident.set(expr, expr) (6)
where ”|” is a character in the language (not a separator for grammar rules) and ident is an
identifier.

Informally, the semantics of the extensions is the following:

var.get(expr) (line 4) returns a value of an Option type. The value None indicates that the key
expr is not in the map and a value Some(t) indicates that the map associates the value of expr
to t. The pattern matching expression in line 5 has the same meaning as in Scala. Notably,
it should be possible to use ident inside the statement in the Some(ident) case. Since Map is
immutable, var.set(expr, expr) at line 6 returns a new updated map object.

a) Complete the following type rule templates so that they are consistent with the described
meaning of the extensions and sufficient to type check the extension if we exclude subtyping.

'k None:--- TF Some(t):--- T'Fnew Map[U,V]():--- TtFua.get(t): -

I' - case expr of None => s; | Some(t) => sy :--- TI'F x.set(er,e2):---

Continued on the next page...

b) Using the rules defined in a) and the four rules below, type-check the following statement
in the environment
I' = {x — Map[Int, String]; y v~ Int; println — String — void}. by giving its full
type derivation tree.

case x.get(y) of
None => println(‘‘key not found’’)
| Some z => println(‘‘key maps to:’’); println(z)

(x:T)el Tre:Ty THf:(T1—-T) Tkt :void TFty:void
Pkaz:T 't f(er): T 't ty;to : void I' ="chars” : String

c) Give sound subtyping rules for the option and map types. These rules should be as
permissive as possible. Explain your choices.

Problem 4: Code generation (20 points)

In the following exercise we consider compilation to a stack machine that uses JVM instructions.
Part 1: Consider the high-level translation of the conditional statement.

[if (¢) sThen else sElse | =
[]
if_eq nElse
nThen: [sThen]
goto nAfter
nElse: [sElse]
nAfter:

Suppose that we extend our language with an additional repeat-until loop construct, which
executes the code in the body of repeat until the condition cond evaluates to true:

repeat {

}

until (cond)

a) Give the high-level translation of this construct in the style of the conditional statement
above.

Part 2: Consider the following function for modular exponentiation, i.e. for computing b°
mod m. Doing the computation directly is slow especially for large numbers, since the inter-
mediate values in the computation of b° can become rather large. The following code does the
computation smarter using the “right-to-left binary” method.

1 def modular_pow(b: Int, e: Int, m: Int): Int = {
2 var result =1

3 var exponent = e

4: var base = b

5: while (expoment > 0) {
6: if ((exponent & 1) == 1)

7 result = (result * base) % m
8 exponent = exponent >> 1

9: base = (base * base) % m
10: }

11: return result
12: %}

In the code above, & performs bitwise AND of its operands and x % y computes the remainder
of the division of x by y.

b) Give the high-level translation of the whole function, i.e. translate the control-flow state-
ments in the style of the conditional above. You can leave the code for the expressions
on lines 7, 8, and 9 un-translated by writing for example [result = (result * base) % m]
in their case. Do not forget to also give a local variable table that contains the names of
variables and their corresponding slots.

c) Give the bytecode for line 7 and for the condition of the if-statement
(exponent & 1) == 1.

These are selected bytecode instructions, mostly for integers, some of which you can use in this
exercise.

iload x Loads the integer value of the local variable in slot x on the
stack. = € {0,1,2,3}

iload X Loads the value of the local variable pointed to by index X
on the top of the stack.

iconst_x Loads the integer constant x on the stack. X €
{0,1,2,3,4,5}.

istore_x Stores the current value on top of the stack in the local
variable in slot x. = € {0,1,2,3}

istore X Stores the current value on top of the stack in the local
variable indexed by X.

ireturn Method return statement (note that the return value has to
have been put on the top of the stack beforehand.

iadd Pop two (integer) values from the stack, add them and put
the result back on the stack.

isub Pop two (integer) values from the stack, subtract them and
put the result back on the stack.

imult Pop two (integer) values from the stack, multiply them and
put the result back on the stack.

idiv Pop two (integer) values from the stack, divide them and
put the result back on the stack.

irem Pop two (integer) values from the stack, put the result of
21%z9 back on the stack.

ineg Negate the value on the stack.

iinc x, y Increment the variable in slot x by amount y.

ior Logical OR for the two integer values on the stack.

iand Logical AND for the two integer values on the stack.

ixor Logical XOR for the two integer values on the stack.

ifXX L Pop one value from the stack, compare it zero according to

the operator XX. If the condition is satisfied, jump to the
instruction given by label L. XX € { eq, It, le, ne, gt, ge,
null, nonnull }

if icmpXX L | Pop two values from the stack and compare against each
other. Rest as above.

goto L Unconditional jump to instruction given by the label L.
pop Discard word currently on top of the stack.

dup Duplicate word currently on top of the stack.

swap Swaps the two top values on the stack.

aload_x Loads an object reference from slot x.

aload X Loads an object reference from local variable indexed by X.
iaload Loads onto the stack an integer from an array. The stack

must contain the array reference and the index.

iastore Stores an integer in an array. The stack must contain the
arrayreference, the index and the value, in that order.

Problem 5: Dataflow Analysis (25 points)

Consider the following code fragment. Assume that the function input() returns an integer in
the range [—128,127]. We want to perform a range analysis of the variables x and y using the
domain of intervals. That is, at any program point each variable can have the following value:

e empty interval (noted L, bottom element of the lattice)
e regular interval [a,b] = {z | a <z < b}, with —128 < a < b < 127.

e T (top of the lattice, denoting any value is possible, including error values stemming from
division by zero)

Operations on intervals are defined in the usual way:
[a,b] o [c,d] = [min(S), max(S)] where S ={zoy | a <z <b && c<y<d}
where o € {+, —, %, /}.

var x = 1
var y = input()

if (x ==y) {
while (y < 5) {
y=y+1
X=x+y+2
}
} else if (y <=3 & y >= -7) {
y=Ey*y
} else {
y =X
}
val z = x/y

a) Draw the control flow graph for the code. Make sure your transitions only have simple
statements.

b) Now run the dataflow analysis as done in class using the domain of continuous intervals.
Indicate the ranges of the variables x and y at each point in your control flow graph. Recall
that the join operation on intervals is defined as follows:

[a,b] V [¢,d] = [min(a,c), max(b,d)]

c) What are the possible ranges of the variables at the end of the code fragment as computed
by the analysis? In particular, what can you say about the run-time safety of the last
statement?

