
Quiz solutions
Compiler Construction, Fall 2012

Wednesday, December 19, 2012

Last Name :

First Name :

Exercise Points Achieved Points

1 10

2 10

3 20

4 25

5 15

6 20

Total 100



Problem 1: Lexical Analysis (10 points)

a) [2 pts]

big_bob | ++= | ‘def‘

VARID OP STRINGID

+* | ‘case‘ | type_x | == | func123_def | =+= | case | ** | def_77

OP STRING VARID OP VARID OP KEY OP VARID

b) [8 pts]
In the automaton, VAR stands for VARID, and STR for STRINGID. All missing links go
to the error state.
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Problem 2: Grammars (10 points)

a) [8 pts]

E1 -> E2 : E1 | E2

E2 -> E3 < E3 | E3

E3 -> E3 + E4 | E4

E4 -> E4 * E5 | E5

E5 -> ( E1 ) | num

b) [2 pts]
2: ( (3 < (4+5)) : ((6*7)*8) )

E1

/ | \

E2 : E1

/ / | \

E3 E2 : E1

/ / | \ \

E4 E3 < E3 E2

| | /|\ \

E5 E4 E3 + E4 E3

| | | | \

2 E5 E4 E5 E4

| | | / | \

3 E5 5 E4 * E5

| / | \ |

4 E4 * E5 8

| |

E5 7

|

6

2



Problem 3: Parsing (20 points)

a) [5 pts]
The CYK algorithm runs as follows:

_________________E_____________

| |

_________E___________

| |

______E_____

| |

E E E E

2 3 4 + 5 - *

Thus we get the following triples:
(E, 0, 1), (E, 1, 2), (E, 2, 3), (E, 4, 5), (E, 1, 4), (E, 1, 6), (E, 0, 7)

The only parse that we get is the following:

E

/ | \

E E *

/ / | \

2 E E -

/ |\ \

E E + 5

| |

3 4

b) [15 pts]
We claim that the grammar is not ambiguous.

There are two ways to show this.

First, consider parsing the language in reverse. For this we reverse all the grammar rules
such that E -> EE+ becomes E -> +EE. The resulting grammar is LL(1) as each grammar
rule starts with a distinct nonterminal. Thus, we can parse the reverse string unambigu-
ously with an LL(1) parser, and reverse the resulting parse tree to obtain the parse tree
of the original grammar.

Secondly, we can show this by induction on the length of the input. In the following, we
assume that the string can be parsed.

The inductive hypothesis is: For every string w of length n, there exists at most one suffix
v of w (that is, v such that there exists u for which w = uv) such that v belongs to the
language of the grammar. Moreover, if such v exists, it has a unique parse tree.

base case: n = 1 The only string that can be parsed successfully is E -> num. The
unique suffix and parse tree is num.

(This is not needed for the proof, but we can observe that for n = 2 the only suffix that
can be parsed is of the form num. For n = 3, the strings that can be parsed successfully
are all of the form num num op for some op. The parser must choose one of E -> EE+,
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E -> EE* or E -> EE-. The suffix is then the entire string and since the final character
determines the applied rule uniquely, the parse tree is unique.)

inductive case: Let n ≥ 0. Assume that the inductive hypothesis holds for all strings of
length i for i ≤ n and we prove it for n + 1.

There are two possibilities: either the string ends with a number, or with an operator. If
the string ends with a number then the unique suffix is simply this number, which has
only one parse tree.

If the last token is an operator, the suffix is the string that can be parsed by applying one
of the first three rules. Which one is determined (uniquely) by the operator. Consider the
string of length n that we obtain from taking our string without the last character.

By inductive hypothesis, the string has a unique suffix of length m, which determines the
second E in the grammar rule. That is, the split of the strings into the first E and the
second E is uniquely determined. Also, the string up to position n−m also has a unique
suffix, which determines the first E of the grammar rule. Hence, either the string cannot
be parsed at all, or the suffix is unique and has a unique parse tree.

(If the entire string can be parsed, then the suffix is the entire string, and thus the parse
tree is unique.)
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Problem 4: Type checking (25 points)

Let us be somewhat generous with grading this question. There are different ways
of formalizing type checking rules and, as long as the rules used make some sense
and the key steps of derivations are given, we can accept them.

a) [10 pts]
The environments are the following:

Γ = {(Phone, void→ Phone), (AntiquePhone, Int→ AntiquePhone),

(MobilePhone, void→MobilePhone)}
ΓP = {(getNumber, void→ Int), (call, Int→ void)} ⊕ Γ

ΓMP = Γ

ΓAP = Γ

and we have the following subtyping relations:
AntiquePhone <: Phone and MobilePhone <: Phone

We now give the type derivation tree for the overall code:

Γ1 ` a = new AP(1981): void Γ1 ` b = new MP: void Γ1 ` a.call(b.getNumber): void

Γ1 = Γ⊕ {(a, P ), (b,MP )} ` (a = new AP(1981); b = new MP; a.call(b.getNumber): void

Γ ` val a: P; val b: MP; a = new AP(1981); b = new MP; a.call(b.getNumber): void

and develop the subparts separately:

(a, P ) ∈ Γ1

(AP, Int→ AP ) ∈ Γ1 Γ1 ` 1981: Int

Γ1 ` new AP(1981): AP AP <: P

Γ1 ` new AP(1981): P

Γ1 ` a = new AP(1981): void

(b,MP ) ∈ Γ1

(MP, void→MP ) ∈ Γ1

Γ1 ` new MP: MP

Γ1 ` b = new MP: void

(a, P ) ∈ Γ1

Γ1 ` a: P (call, Int→ void) ∈ ΓP

(b,MP ) ∈ Γ1

Γ1 ` b: MP MP <: P

Γ1 ` b: Phone (getNumber, void→ Int) ∈ ΓP

Γ1 ` b.getNumber: Int

Γ1 ` a.call(b.getNumber): void

b) [8 pts]
We will denote T ∗ to be either T− or T+ (but not both in the same type rule). We will
use the type variables R,S, T .

For any constructor of a class T , (T, void→ T−) ∈ Γ.

1 :
(T, void→ T−) ∈ Γ

Γ ` new T : T− 2 : Γ ` null : T+ (for any T)
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3:
(x,R−) ∈ Γ (p, S+) ∈ Γ (fnc, S+ → T+) ∈ ΓR

Γ ` x.fnc(p) : T+

4 :
Γ⊕ (x, T ∗) Γ ` e : T ∗

Γ ` (val x: T = e): void
5 :

(x, T ∗) ∈ Γ Γ ` e : T ∗

Γ ` (x = e): void

c) [7 pts]
In order to prevent dereferencing a null value, we have to enforce the following condition:
each variable only holds the values that its type permits it to hold. In particular, we have
to make sure that whenever we have a variable of type T−, null cannot be assigned to it.

For the below argument, we assume that the code type checks according to our type rules.

Objects or null values are the most basic elements in our language. By the rules 1 and 2
we see that we enforce correct types: newly created objects have type T− and null will
always get a type T+.

From this, we can create more complex expressions by using method calls (rule 3). The
return type of a method is always T+, so that we cannot assign a null value a non-nullable
type.

Thus, we have shown that the type rules for expressions are sound.

Finally, these expressions can be assigned to a variable. If the variable is declared at the
same time (rule 4), it gets the same null-annotated type as the expression, hence we will not
store a null value in a non-nullable type by the correctness of typing of our expressions.

If we have an assignment without declaration (rule 5), the variable must have the same
null-annotated type as the expression, so by the same reasoning no null value can be
stored in a non-nullable type.

Note that our rules allow assigning e : T− to x : T+ by subtyping, but not the other way
around.

Hence, we have shown for all statements in our language that if they type check according
to our rules, a variable with type T− will never store a null value. Then, given our type
rule for method calls (rule 3), this prevents null-dereferencing a null value as method calls
are only allowed on non-nullable variables.
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Problem 5: Code generation (15 points)

a) [5 pts]

Jdo { body } until (c)K =
nStart: J body K

JcK
if eq nStart

nAfter:

b) [10 pts]

J initializationsK
nStart: J swapped K

if eq nAfter
J swapped = false; j += 1; var i = 0; K

fStart: J i < arr.length - j K
if eq fAfter

J arr(i) > arr(i+1) K
if eq iAfter

J swap(...); swapped = true; K
iAfter: Ji = i + 1;K

goto fStart
fAfter: goto nStart
nAfter:
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Problem 6: Data flow analysis (20 points)

a) [5 pts]

b) [13 pts]
Running interval analysis until convergence leads to the following ranges at each CFG
node:

node in CFG x y z

1 [2, 5] [-5, 24] ⊥
2 [2, 4] [-5, 24] ⊥
3 [2, 4] [-1, 32] ⊥
4 [2, 4] [-1, 24] ⊥
5 [2, 4] [15, 24] ⊥
6 [3, 5] [15, 24] ⊥
7 [2, 5] [-5, 32] ⊥
8 [2, 5] [-5, 32] >

c) [2 pts]
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At line 15, according to the analysis, x can have values [2, 5] and y can have values [−5, 32].
Thus, the analysis would conclude that a divide-by-zero is possible at line 15.
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