
Quiz
Compiler Construction, Fall 2014

Wednesday, November 5th, 2014

Version 4

General notes about this quiz

• Have your CAMIPRO card ready on the desk.

• You are allowed to use any printed material (using standard fonts, no cursive or script
fonts) that you brought yourself to the exam. You are not allowed to use any notes that
were not typed-up. Also, you are not allowed to exchange notes or anything else with
other students taking the quiz.

• Use separate sheets, for each question, to write your answers. No sheet of paper should
contain answer to two or more questions at the same time.

• Make sure you write your name on each sheet of paper.

• Use a permanent pen with dark ink.

• It is advisable to do the questions you know best first.

• You have in total 2 hours 50 minutes.

Exercise Points

1 15

2 20

3 25

4 20

Total 80

Problem 1: Lexer for Logical Formulas (15 points)

a) [10 pts] Design a lexical analyser that given a stream of characters belonging to the set
{a, 0, 1, !,=, >,<}, tokenizes it into the tokens listed below. The tokens are shown on the
left and their defining regular expressions are shown on the right.
Token name Regular expression
ID a(a|0|1)∗

INT (0|1)∗

NOT !
IMP =>
EQV <=>
EQ =
LE <=
GE >=

b) [5 pts] Describe the output (including indicating generated tokens) produced by running
your lexer on the following inputs:

i) a11 <=>>= 10a10 <=====>= a111a1

ii) a1 <=>= a10 <=>> a

Mention also the characters of the input stream that correspond to any generated tokens.

Problem 2: Tail-recursive Grammars (20 points)

Consider the grammar shown below where S is the start non-terminal symbol of the grammar,
P , Q and R are non-terminals, and a, b are terminals.

S ::= a S | b S | a P
P ::= a Q | b R
Q ::= a P | b R
R ::= a R | b R | ""

a) [3 pts] Find a string accepted by the grammar that has two parse trees. Depict these two
parse trees.

b) [7 pts] Construct an unambiguous grammar that is equivalent to the grammar shown
above.

c) [10 pts] We say that a grammar is tail-recursive iff every production in the grammar is of
the form A ::= wB or A ::= w, where w is a (possibly empty) string of terminals, A and B
are non-terminals. Describe a procedure that given any tail-recursive grammar constructs
an equivalent unambiguous grammar. Your procedure can use other conversion algorithms
explained in the lectures as sub-steps and it should be possible in principle to implement
it as a transformation that accepts a grammar and produces another grammar.

1

Problem 3: Parser for Logical Formulas (25 points)

Consider the following grammar that accepts well-formed propositional formulas over the alpha-
bet A = {∧,∨,¬,), (, atom}.

F ′ ::= F EOF

F ::= F ∧ F | F ∨ F | ¬F | (F) | atom

a) [3 pts] Is this grammar LL(1)? Justify your answer.

b) [7 pts] Modify the above grammar so that it accepts only formulas that are in conjunctive
normal form, which is described below:

(a) We use the term literal to denote an atomic predicate atom or its negation i.e, ¬atom.

(b) A clause Ci is either a single literal or a disjunction of literals enclosed within paren-
theses. That is, each Ci is of the form l or (l1 ∨ l2 ∨ · · · ∨ lmi) where l, l1, · · · , lmi are
either atom or ¬atom.

(c) A conjunctive normal form formula is of the form C1∧C2∧ · · ·∧Cn, for n ≥ 1, where
each Ci is a clause.

For example, the following formulas are in conjunctive normal form where a and b are
atomic predicates.
a
a ∧ b
(a ∨ b)
¬a ∧ ¬b
(a ∨ ¬c) ∧ b
(¬a ∨ ¬b ∨ c) ∧ (a ∨ ¬b)
Note that in a conjunctive normal form formula parentheses appear around clauses that
contain more than one literal and nowhere else. If you are not sure whether some formula
is in conjunctive normal form or not, do not hesitate to ask us.

c) [5 pts] Convert the grammar that you designed for accepting conjunctive normal form
formulas to LL(1) if it is not already in LL(1).

d) [10 pts] Create the LL(1) parsing table for your grammar. Show the first and follow sets
for each non-terminal of your LL(1) grammar.

Problem 4: CYK Parsing (20 points)

Consider the following simple grammar for lambda calculus, where term is a non-terminal, and
ID , λ, (,) and . are terminals

term ::= λ ID . term | term term | (term) | ID

a) [10 pts] Convert this grammar to Chomsky Normal Form by ensuring the following prop-
erties.

1. terminals t occur alone on the right-hand side: X ::= t

2. no unproductive non-terminal symbols

2

3. no productions of arity more than two

4. no nullable symbols except for the start symbol

5. no single non-terminal productions X ::= Y

6. no non-terminals unreachable from the start symbol

It is sufficient if you only write the final grammar that you obtain.

b) [5 pts] Use the CYK algorithm and your normal form to construct a CYK parse table for
the string: “λ y . x y x”. Is this string accepted by the grammar ?

c) [5 pts] How many parse trees exist for the above string ? Justify your answer using the
CYK parse table for the string. Note that every parse tree for the string should have the
start symbol at the root and should cover the entire string.

Hint: If a substring wi,j can be parsed by partitioning it into two in n ways, the number
of parse trees for wi,j is the sum of the number parse trees for each partition. Given a
partition wi,p and wp+1,j of wi,j, the number of parse trees for the partition is the product
of the number of parse trees for wi,p and wp+1,j.

3

