
Quiz
CS-320, Computer Language Processing, Fall 2015

Wednesday, November 18th, 2015

Version 1

General notes about this quiz

• Have your CAMIPRO card ready on the desk.

• You are allowed to use any printed material (using standard fonts, no cursive or script
fonts) that you brought yourself to the exam. You are not allowed to use any notes that
were not typed-up. Also, you are not allowed to exchange notes or anything else with
other students taking the quiz.

• Use separate sheets, for each question, to write your answers. No sheet of paper should
contain answer to two or more questions at the same time.

• Make sure you write your name on each sheet of paper.

• Use a permanent pen with dark ink.

• It is advisable to do the questions you know best first.

• You have in total 3 hours 40 minutes.

Exercise Points

1 25

2 25

3 25

4 25

Total 100

Prelude. In this quiz, you consider the scenario where you are hired by a new Swiss start-up
company that aims to disrupt the smartwatch market. The main product is a wearable device
that runs apps in a variant of HTML5 so energy-efficiently that it can be powered solely by
absorbing the heat of the person wearing it. You are in charge of building the compiler for
this platform. You soon discover that using off-the-shelf regular expression libraries depletes a
fully charged watch battery before processing <title>Textme</title>, so you need to build
the compiler making use of what you learned in the class.

Problem 1: Lexer for XML (25 points)

The goal of this exercise is to develop a lexer for XML. The input to the lexer is a stream of
characters belonging to the set Σ = {a, · · · , z, A, · · ·Z, 0, · · · , 9, <,>, /, {, :, },′′ , !,−,WS}, where
WS denotes a white space character. As a shorthand, we will use letter to denote any character
in {a, · · · , z, A, · · ·Z}, digit to denote any of 0, · · · , 9, and special to denote any of {, }, :. (Note
that special does not include other non-alpha-numeric characters like <,>,′′ , !,−.)
Your goal is to construct a lexer (i.e, an automaton) that tokenizes the input stream into the
tokens listed below. The tokens are shown on the left and their defining regular expressions are
shown on the right.
Token name Regular expression
OP <
CL >
OPSL < /
CLSL / >
EQ =
NAME letter(letter | digit)∗

NONNAME (digit | special)(letter | digit | special)∗

STRING ′′(letter | digit | special)∗′′

COMMENT <!−− (letter | digit | special)∗ −− >
SKIP WS

a) [15 pts] Construct the labelled DFA described in the lectures for the tokens define above.
Note that every final state should be labelled by the token class(es) it accepts.

Consider the following XML string.

<jsonmessage>

<!--CommunicationOfJSonObjects-->

<from ip="">EPFLserver</from>

<message>{"field":1}</message>

</jsonmessage>

b) [10 pts] Show the list of tokens that should be generated by the lexer for the above XML
string. You should use the Maximum Munch Rule to tokenize. You need not show SKIP
tokens, which correspond to whitespaces.

1

Problem 2: Parser for XML (25 points)

In this exercise, your are required to design an LL(1) parser for XML. Consider the follow-
ing grammar that describes syntactically correct XML strings. The terminals of the grammar
are the tokens that would be generated by the lexer (which you designed in the previous exercise).

element → OP NAME attributes CL content OPSL NAME CL
| OP NAME attributes CLSL

attributes → attributes attr | ε
attr → NAME EQ STRING
content → textOpt | body
textOpt → NAME | NONNAME | STRING | ε
body → body elemOrComment | elemOrComment
elemOrComment → element | COMMENT

Remark: the above grammar is a simplified version of the Antlr v4 XML grammar available at
https://github.com/antlr/grammars-v4/xml/XMLParser.g4

a) [25 pts] Convert the above grammar to an equivalent grammar that is LL(1). Show the
Nullable non-terminals of your grammar, and the First and Follow sets of each non-
terminal.

Problem 3: CNF grammar for JSON (25 points)

Consider the following grammar that accepts JSON (JavaScript Object Notation) strings.
json → object
object → { pairs } | { }
pairs → pairs STRING : value | ε
value → STRING | NUMBER | object

a) [10 pts] Convert the grammar to Chomsky’s Normal Form. Recall that a grammar in
CNF should satisfy the following properties.

1. terminals t occur alone on the right-hand side: X ::= t

2. no productions of arity more than two

3. no nullable symbols except for the start symbol

4. no single non-terminal productions X ::= Y

5. no unproductive non-terminal symbols

6. no non-terminals unreachable from the start symbol

It is sufficient if you only write the final grammar that you obtain.

2

b) [15 pts] Check using the CYK algorithm if the word: “{ STRING : { } }” can be parsed
by the grammar. Below you can find the template of the CYK parse table for the string.
Fill in the entries of the table. It is sufficient to show only the entries that correspond to
a parse tree of the string.
Hint: You could manually come up with a parse tree of your CNF grammar for the word,
and then fill in the required entries of the CYK table that corresponds to the parse tree.

3

Problem 4: Intersection Types (25 points)

In this exercise, we will consider the notion of intersection of types. Let T1 and T2 be two types
belonging to our langauge. An expression has an intersection type T1 ∧ T2 iff it can be typed as
both T1 and T2. Therefore, we have the following type rules.

Γ ` e : T1 Γ ` e : T2

Γ ` e : T1 ∧ T2
Γ ` e : T1 ∧ T2

Γ ` e : T1

Γ ` e : T1 ∧ T2
Γ ` e : T2

We consider T1 ∧ T2 and T2 ∧ T1 to be the same. In the above rules T1 and T2 can also be
function types like R→ S.

a) [5 pts] If T1 and T2 are arbitrary types, consider the following three expressions denoting
types: T1 ∧ T2, T1, and T2. State all subtyping relations that you believe should hold
among the 3× 3 possible pairs of expressions.

Enter <: if the type corresponding to the row is a subtype of the type corresponding to the
column; enter / if this is not necessarily the case.

<: T1 T2 T1 ∧ T2
T1
T2

T1 ∧ T2

In the next part of the exercise, you are required to come up with a type derivation involving
intersection types. Consider a language, similar to the one descried in lecturecise 12, with arith-
metic operations, if-else expressions, assignment and block statements, that has the following
types: Pos, Neg, Int and Bool. (We provide all the type rules that you may need for this
exercise at the end of this question.)
Consider the function f shown below. Γ0 is the initial type environment before the beginning
of the function.

Γ0 = { divk : (Pos→ Pos) ∧ (Neg → Neg)}
def f(x : Int) : Int {
if(x > 0) divk(x)
else
if(x < 0) divk(x)
else x

}

divk is a function (e.g. like x => 10/x) that maps positive integers to positive integers and
negative integers to negative integers. Observe that with intersection types we can type the
function as (Pos→ Pos) ∧ (Neg → Neg).

b) [20 pts] Complete the type derivation for the body of the function f , shown on page 5,
by filling in the holes marked with ?. If the expression will not type check, show the step
where the type derivation cannot proceed. You will need to use only the type rules of
intersection types and the types rules shown below.

4

Type Rules:

(x, T) ∈ Γ

Γ ` x : T
Pos <: Int Neg <: Int

Γ ` e : T1 T1 <: T2

Γ ` e : T2

Γ ` e : T

Γ ` {e} : T

s1 : Unit Γ ` {s2; · · · sn} : T

Γ ` {s1; · · · ; sn} : T

Γ⊕ {(x, T)} ` {s2; · · · sn} : T

Γ ` {var x : T ; s2; · · · ; sn} : T

Γ ` x : Int Γ⊕ {(x, Pos)} ` e1 : T Γ ` e2 : T

Γ ` if(x > 0) e1 else e2 : T

Γ ` x : Int Γ⊕ {(x,Neg)} ` e1 : T Γ ` e2 : T

Γ ` if(x < 0) e1 else e2 : T

Γ ` b : Bool Γ ` e1 : T Γ ` e2 : T

Γ ` if(b) e1 else e2 : T

Γ ` e1 : T1 · · · Γ ` en : Tn Γ ` g : (T1 × · · · × Tn)→ T

Γ ` g(e1, · · · , en) : T

5

Γ
1
`
x

:
P
os

?

Γ
1
`
d
i
v
k

:
?

?

Γ
1
`
d
i
v
k
(
x
)

:
I
n
t

Γ
`
x

:
I
n
t

Γ
2
`
x

:
N
eg

? ?

?

Γ
2
`
d
i
v
k
(
x
)

:
?

Γ
`
i
f
(
x

<
0
)

d
i
v
k
(
x
)

e
l
s
e

x
:
I
n
t

Γ
`
i
f
(
x

>
0
)

d
i
v
k
(
x
)

e
l
s
e

i
f
(
x

<
0
)

d
i
v
k
(
x
)

e
l
s
e

x
:
I
n
t

w
h

er
e,

Γ
1

=
?

Γ
2

=
?

6

