Computer Language Processing

Quiz Solution
Wednesday, November 27, 2019

Exercise | Points | Points Achieved

1 20
2 20
3 10
4 30

Total 80

This page intentionally left blank.

Exercise 1: Regular Languages (20 points)

Consider the alphabet A = {a,b, c}.

Question 1.1

Which of the following regular expressions exactly describe the language of all words that contain an a
immediately followed by b, and contain exactly one c. Circle letters next to all correct options.

A. (ab)c(alb)*
No (incomplete).
B. axb*(caxb*ab)*a*xb*
No
C. (alblc)*ab(alblc)*
No
D. (alb)*((ab(alb)*c(alb)*) | (c(alb)*ab(alb)*))

Yes
E. (alb)*(ablc) (alb)*(ablc) (alb)*
No
F. ((alb)*ab(alb)*c(alb)*) | ((alb)*c(alb)*ab(alb)*)

Yes

Question 1.2

Give a minimal deterministic finite-state automaton that describes the complement of the language from
Question 1.1. Write down all the states and transitions explicitly.

Exercise 2: Context-free Grammars (20 points)
Consider the following context-free grammar, where <E> is the starting symbol:
(E) == (ER) (D)

(ER) == E ‘||’ | ¢

(D) == (B) | (DR) (B)

(DR) := (B) (DS)

(DS) ::= ‘&&’ (DR)

(B) == ‘true’ | ‘false’ | (O) (EC)

(0) := *C

(EC) == (E))’

Question 2.1

Which of the following sequences are accepted by the grammar? Circle letters next to all correct options.

A. true

Yes
B. true || false
Yes

C. (true && false)

No

D. true == false || true
No

E. (true || false || true) || (true || false)
Yes

Question 2.2

Which of the following statements are true? Circle letters next to all correct options.

A. <D> is nullable.

No

B. <DS> is productive.

No

C.) is in FOLLOW(<EC>).

Yes

D. (is in FIRST().

Yes

Question 2.3

Which of the following statements are true? Circle letters next to all correct options.

A. The grammar is LL(1).
No

B. The language described by the grammar is regular.
No

C. The grammar is in Chomsky Normal Form (CNF).
No

D. The grammar contains infinitely many words.

Yes

Exercise 3: Type Inference (10 points)

Consider the following type system for a minimal language with anonymous functions and applications.

Fzw— SlkFe:T The:S=T TI'key:S (z,T)eT
'Fx=¢):5=T IF'keg(e): T 'kz:T

Like in Scala, application has a priority over anonymous function creation, so that, for example,
x = (y = y)(x) denotes z = ((y = y)(x)).

For each of the following expressions, determine the result of type inference via unification. That is, state
whether a most general type can be inferred, and if so, write it out.

E.g., for (z = x) the answer is yes, and its most general type is A = A.
A (z=(y=y)))

Yes, A= A

B. (f=(z=f(f(z)))

Yes, (A= A)= A=A

C.(f=(x=(9=flg())(x)))

No; To see why the occurs check must fail at some point during unification, note that in
(9 = f(g(z)))(x) we are essentially applying z to .

D. (f= (9= (z= fz)(g(z))))

Yes, (A=B=C)=(A=B)=A=C

E (f=(=(=9((2))))

Yes, (A= B)= (B=(C)=A=C

Exercise 4: Lowering between Typed Languages (30 points)
Consider the following simple language, £ (“L-high”), featuring integer constants and lists of integers:
(vy :== n | nil | n:(v) (values)

(e) :

(v) | x| let x = (e); (e) | given h :: t = (e) then (e) else (e) (expressions)
where h, t and x are variables and n stands for integer constants.

The language’s operational semantics is given by the following rules:

e1 ~ €} e1 ~ €]

(let z =e1; ea) ~ (let x = €); ea) (let © = v; e3) ~ [z — v]ea (e1::ea) ~ (€} :: e2)
e1 ~ €] e ~ €

(given h :: t = e; then es else e3) ~ (given h :: t = ¢ then e; else ¢3) (n:eg) ~ (n:eh)

(given h :: t = nil then e, else e3) ~ e3 (given h :: t = v :: vy then ey else e3) ~ [h — v1][t — vales

The types and (partial) typing rules of £ are as follows:

<T> = Int | List (types)
n is an integer literal (x,T) el
L+ n:Int L 2T T 9 nil : List
FHT e :Int THY ey :List IH e 8 F[xHS]FHeQ:T
L (eg ::eg) : List DT (let z=ep;) : T

Question 4.1 (3 points)

What values do the following expressions evaluate down to?

1. (let zs =1 :nil; 2:: 2s) ~ 221 il
2. (given h::t=3:: (4 nil) then h :: (h:: t) else nil) ~ 3 :: 3 :: 4 nil

3. (let as=1: nil; (given a :: bs = as then (given b :: cs = bs then 2 else 3) else 4) :: as) ~ 3 :: 1 :: nil

Question 4.2 (4 points)

The type system above is missing a rule for given expressions. Complete the rule below such that the resulting
type system is sound and all of the expressions in Question 4.1 are typable.

I+ e :List T[h Int]ft— List] F7 e: T THT eg: T

LA (given h :: t = e; then es else e3) : T'

Now consider another language, L1, (“L-low”), which is equivalent to £ save for its operation on lists:

(v) :== n|nil|n: (v) (values; as in £H)

(e) := (v) | « | let x = (e); (e) | head({e)) | tail((e)) | ifNonEmpty((e)) then (e) else (e¢) (expressions)

Its operational semantics is the same as £ s for all common expressions. The new operations are characterized
as follows:

e ~ €}

ifNonEmpty(e;) then e; else e3) ~ (ifNonEmpty(e}) then e, else e3
1

e~ e
(ifNonEmpty (nil) then ey else e3) ~ e3 head(e) ~~ head(e’) head(vy :: v2) ~ 1
e~ e
(ifNonEmpty(v; :: v2) then es else e3) ~ ey tail(e) ~ tail(e’) tail(vy :: vg) ~ v

In compilers programs typically undergo a series of transformations from higher-level to lower-level represen-
tations — this is often referred to as “lowering”. We would like to define a lowering from £ to Ly, along with
an appropriate type system for £, so that lowered expressions remain well-typed. In particular, we want to
define a translation function [-] that maps each well-typed expression of £# to a well-typed expression of Lr.
We will solve this problem by first choosing an appropriate set of typing rules for £, and only then defining
the translation function.

Question 4.3 (3 points)

In £H list-operations could only get stuck when invoked on non-lists, e.g. given h :: t = 1 then 2 else 3.

In £} we additionally have list-operations that can get stuck when invoked on a list. Give an example of one
such stuck expression in Ly,.

E.g., head(nil) or tail(nil)

10

Question 4.4 (10 points)

We define a type system for £;,. We use the types of £L¥, along with a new type of non-empty lists NEList:
(T) ::= Int |List | NEList (types)

Circle a subset of the following typing rules, such that:
o all of the following expressions are typable:

— head(0 :: 1 :: nil)
— let k = 2; ifNonEmpty(tail(3 :: nil)) then & else 4
— let ys = nil; ifNonEmpty(ys) then head(ys) :: k :: tail(ys) else k :: nil

« the type system is sound with respect to £;,’s operational semantics (i.e., evaluation can’t get stuck),

« the subset is minimal (i.e., no typing rule is redundant).

n is an integer literal (z,T) el Tktrpe:S T Slkpe:T
I'bFr n:Int 'ty a:T Py (let z=e15 e2): T
I'kp e:List I' 7 e: NEList
I'F7 nil: List I' b nil : NEList I'F; e: NEList I'Fp e:List
I'tpep:Int I'bHpey:NEList I'kFpep:Int I'hpeo:List I'Fpep:Int I'bpeg:List
I'kp (eq i eg) : List I'Fr (eg ::eg): NEList I'kp (eq i eg) : List
I'p e: NEList I' 7 e: NEList I'kp e:List I'; e: NEList
I' 1, head(e) : List I' k7 head(e) : Int I b tail(e) : List I' k-, tail(e) : List
IFre:List Thrpeg:T Thpes:T 'ty x:List Tz~ NEList|bpes:T Thpes:T
I' by, (ifNonEmpty(e;) then es else e3) : T I by, (ifNonEmpty(x) then ey else e3) : T

D[z — NEList| by @ :List T[x+— NEList]bpea:T Thpez:T

I+ (ifNonEmpty(x) then e; else e3) : T

Ity x:List Tz~ NEList] bp es: T Tz — NEList]bpes: T
I' by, (ifNonEmpty(x) then e; else e3) : T

Hint: Remember that e refers to all expressions, whereas x only refers to variables!

11

Question 4.5 (10 points)

Finally, we will construct a translation function [-] which maintains the result of expressions, i.e.,
Vee LH v, e~ v = [e] ~ v
Furthermore, expressions well-typed in £7 should remain well-typed in £;, after translation:

Vlbee . 3IT.TH! e¢:T = 3T.TtHp [e]: T

Ensure that the size of each rewritten expression [e] is linear in the size of the original expression e.

The first three rules for variables, integer constants and nil, are already given to you:

[z] =« [n] :==n [nil] := nil

Circle a subset of rules forming a total function [.] : £L# — L satisfying the above constraints.

‘ [let = ey; es] := (let @ = [e1]; [e2]) ‘ [let © = ey; es] := (let © = ey; [e2])

Net = = eq; es] := [z — [er]] [e2]

[n:e]:i=(n:e) [n:e] = (n:[e]) [e1 :: ea] := (e1 :: [e2]) ‘ [e1 :: ea] := ([ea] :: [e2]) ‘

[given h :: t = e; then es else es] ;= (given h :: t = [e1] then [es] else [es])

[given h :: t = e; then e; else e3] := (let x = [[e1]; given h :: t = x then [es] else [es])

[given h :: t = e; then ey else es] := (ifNonEmpty([e;]) then [es] else [es])

[given h :: t = e; then ey else es] := (ifNonEmpty([e;]) then [h — head([e1])][t — tail([e1])] [e2] else [es])

‘ [given h :: t = e; then e, else es] := (let x = [e;]; ifNonEmpty(x) then [h — head(x)][t — tail(z)] [e2] else [es]) ‘

(where [z +— ej]eq is the substitution of all in e; by ej, as usual.)

12

	Question 1.1
	Question 1.2
	Question 2.1
	Question 2.2
	Question 2.3
	Question 4.1 (3 points)
	Question 4.2 (4 points)
	Question 4.3 (3 points)
	Question 4.4 (10 points)
	Question 4.5 (10 points)

