Quiz
(CS-320, Computer Language Processing, Fall 2016
Wednesday, November 23rd, 2016

General notes about this quiz

Have your CAMIPRO card ready on the desk.

You are allowed to use any printed material (no cursive or script fonts) that you brought
yourself to the exam. You are not allowed to use any notes that were not typed-up. Also,
you are not allowed to exchange notes or anything else with other students taking the quiz.

Try to write your answers in the space provided in the question paper

If you need separate sheets, for each question, write your answers on a separate sheet.
Make sure you write your name on each sheet of paper.

Use a permanent pen with dark ink.

It is advisable to do the questions you know best first.

You have in total 3 hours 40 minutes.

Exercise | Points
15
20
15
25
25
Total 100

G| WIN|

Problem 1: Left-canceling Languages (15 points)

Let ¥ = {a, b} for a,b distinct, and Ly, Lo, L range over subsets of ¥* (languages). Remember
that for languages, concatenation is defined by

L1Ly = {U1UQ | up € Ll,UQ S LQ}
We say that L left-cancels if and only if, for every Lq, Lo,
LL1 = LLQ implies L1 = Lg.

For all of the following questions, a correct answer is sufficient for full points; you do not need
to show how you obtained your answer (but you may do so as you may exceptionally obtain
partial credit for incorrect solution).

a) [2 pts] Does L = () left-cancel?
b) [2 pts] Does L = {e} left-cancel?

c) [7 pts] Give a regular expression describing an infinite language L that left-cancels.

d) [4 pts] Give a context-free grammar for another language L that left-cancels and that is
not a regular language.

Problem 2: Lexical Analysis (20 points)

Suppose that token classes of a lexer are given by the following regular expressions:
e HEX:(0[1]a)(0|1|a)x*
e ID: a(a|b|0|1)x*
e EOF: §

Suppose also that there are no comments or white spaces in this language and that HEX has
priority over ID. The input is a string satisfying the regular expression

(01alb)*$
where $ is a special end-of-file character.

a) [5 pts] Show the automaton for the lexical analyzer that accepts the above two token
classes. Assume that the execution mechanism interprets the automaton by applying
longest match rule and restarting the state machine after each token is identified.

b) [3 pts] Consider the following input string:

01ab$

What is the result of running the lexical analyzer on this input using longest-match rule
and the priority of HEX over ID?

c) [6 pts] Show a deterministic finite state machine that accepts precisely those strings of
characters that are accepted by repeatedly running the above lexical analyzer with longest
match rule and priority, until it processes the entire input. Unlike the diagram in part
“a)”, your machine should have only one kind of state, which accepts the entire input.
Your machine should not accept a string if the longest match rule is violated. The machine
simply gives accept/reject answers; it need not indicate how the sequence was split into

tokens.

d) [6 pts] Generalizing the previous part, consider an algorithm that given two arbitrary
regular expressions e and e for token classes, constructs a deterministic automaton that
accepts strings of characters corresponding to multiple tokens of token classes e, ey and
EOF (defined as $), while applying longest match rule. You can describe the automaton by
defining mathematically its transitions if it is easier or shorter than drawing the diagram.
If the problem is not solvable in general, show regular expressions e; and es for which it
is not possible to build such an automaton.

Problem 3: Parsing and Grammars (15 points)

Consider the grammar
decl ::= varDecl | funDecl
varDecl ::= type ID;
funDecl ::= type ID (optIDs);
optIDs ::= ¢ | IDs
IDs ::=1ID | IDs, ID
type := int | typex

a) [5 pts] Compute nullable and first for all non-terminals of the above grammar, using the

following table.

non-terminal | v/ = nullable v = in first
ID|;|(])]int |

decl
varDecl
funDecl
optIDs

IDs

type

b) [2 pts] Explain why the above grammar is not LL(1).

c) [8 pts] Give an LL(1) grammar describing the same sequences of tokens as the previous
grammar.

Problem 4: Interval Types (25 points)

Consider a language that allows integer valued variables to be typed using a range of values it
can possibly take. Let Zgs = {v € N | — 23! <2 < 23! — 1} denote the set of 32 bit integers.
The types of our language are: T ::= Bool | [a,b], where a € Zs2, b € Zgp and a < b. If an
expression e has an interval type [a, b] then it means that its runtime value has to be an integer
v in the range a < v < b.

Consider a functional language that has the following expressions. Integer and boolean constants:
Zsz U {true, false}, identifiers, denoted id, primitive operations over expressions: { ==, +,
/ }, if-else expression: if(e;) ez else ez, let expression: let id = e; in ep, and function calls:
f(e1, -+ ,epn), and function definitions. Find below the usual type rules for some of the constructs
of the language.

Type Rules:

(¢, T)eTl k € {true, false} I'Fe: Ty Ty <: Ty
I'ta:T F &k : Bool I'kFe:T5

I'F ey : Bool I' F ey : Bool I'F ey : Bool
I'Fif(es) ez else es : Bool

F|—€1:T1 FI—QQ:TQ I‘I—el:Tl F@{(ld,Tl)}l—egT
I'F eg==ey : Bool I'Flet id=e; iney: T

Fl—el:Tl Fl—elcTn FI—f:Tlx---xTn—>T
F}_f(ela"'7en):T

F@{(x17T1)7”. 7(xn7Tn)}}_e:T
Phdef f(x1:Th, - ,xn:Ty): T = e:ok

a) [5 pts] Complete the following sub-type relation on interval types.

[a,b] <: [e,d]

b) [2 pts] Since our language has arithmetic operations and 32 bit integers, we have to
deal with overflows, which are situations where a result of an operation is too large or too
small to fit within the available bits. Assume that you are given an operation g
Zso X Lg2 — 732 that can add two 32 bit integers and return a 32 bit integer using a two’s
complement representation. This function has the following property (+ is the normal
addition over integers):

(n +32 m) <0 ifn+m>23 -1
(n +32 m)>0 ifn+m< =231
(n +32 m)=n+m Otherwise

Define a function overflow([a,b], [c,d]) that takes two interval types and returns true if
and only if there exists two integers belonging to the two types, respectively, whose sum
results in an overflow. You can use only the operation 432 , logical operations like &&,
|| and !, and comparison operations like <, <= etc. to define the function.

overflow([a, b], [¢,d]) = ?

c) [8 pts] Complete the type rules for the expressions listed below. Notice that we have
two rules for addition: one where overflow can happen and another where overflow cannot
happen. For the division of two expressions e /eg, ensure that the divisor (e2) can take only
positive (excluding zero) values. Fill in the missing conditions of the rules appropriately.
In your answer, you can use the 432 operation, integer division and any other standard
operations on integers like exponentiation, abs etc. Make sure that your type rules are as
precise as possible, unless their is a possibility of an overflow. That is, if an expression e
is given a type T then it should not be possible to also type it as T” such that 77 <: T,
unless e may result in an overflow. If e may result in an overflow (given the types of the
variables used by e), the type of e need not be as precise as possible.

ke Zgg
Fk: 7
? overflow(7)
I'kejtey: ?
? loverflow(7)
I'Fej4ey: ?
IF'Feifeg: 7

'k ey : Bool I'tey:a,b] I'key:c,d]

4

'k if(eg) eg else eg :

d) [2 pts] Say we now augment our language with an integer array type Array[k] that has size
k. We also introduce two array expressions: new Array(k) and a(i). The expression new
Array(k) creates a new array of size k for storing integers of arbitrary value. The expression
a(i) reads the element at the index i of the array a. Complete the type rule for a(i) shown
below so that it type checks if and only if it does not throw ArraylndexOutOfBoundExpection.
The exception would be thrown if the value of i is outside the possible indices of the array
i.e, 0 and size of a minus 1.

k>0NEk € Zss ?
Fnew Array(k) : Arraylk] Cka(i): 7

10

e) [5 pts] Consider the following program. Come up with types for the function search so that
the program type checks in your type system. You need not show the type derivation. It

suffices to show the types for the parameters and return value.

def main(a: Array[100]) {
search(a, 0, 100, —10)

}

def search(a: 7 L0
if (a(i) == key)) i
else if(i == j) —1
else {
let mid = (i 4 j)/ 2 in
let r1 = search(a, i, mid, key) in
if(rl1 == —1) search(a, mid, j, key)
else rl

f) [3 pts] Say we change the type of the array a to Array[23' — 1] and the call to search in
the function main to search(a, 0, 2% — 1, —10). Can you now come up with a type for search

so that the program type checks in your type system. If so, show the type of search. If not,
briefly explain why. Here again you need not show the type derivation.

11

Problem 5: Code Generation for Pattern Matching (25 points)

Consider a language that has a built-in list case class having two constructors Cons and Nil as
shown below.
sealed abstract class List

case class Cons(head: Int, tail: List) extends List
case class Nil() extends List

Say our language has a pattern matching expression as in Scala of the following form.

e match {
case pat; = e

case pat, = e,

}

In the above match expression, e, e; - - - e, are expressions belonging to the language, and each
pat;, 1 < i < nis a pattern whose syntax is defined by the following grammar.

pattern ::= Cons(_, pattern) | Cons(_, _) | Nil()

Underscore (_) is a wildcard that matches any value.

a) [10 pts] Your first task is to define a function branchPat(pat, tl, fl) similar to the branch
function we explained in the lectures. The function should match the pattern pat against
the value at the top of the stack. If the matching succeeds it should jump to the label ¢,
and otherwise to the label fi. You are allowed to use any valid Java byte code instruction.
However for your reference, we have listed some byte code instructions you may need at
the end of the problem.

Hint: (a) You can invoke branchPat recursively on sub-patterns if necessary. (b) You can
duplicate the top of the stack using the byte code instruction dup and discard the top of the
stack using the byte code instruction pop.

If pat = Cons(_, pat2),

branchPat(pat, tl, fl) = ?

12

If pat = Cons(_, _),

branchPat(pat, tl, fl) = 7

If pat = Nil(),

branchPat(pat, tl, fl) = ?

b) [5 pts] Use the branchPat function to define the translation for the match expression.
The label lafter is the label you should jump to after the match expression. You can use
[e] and [e;] to denote the code of the expressions.

[e match {
case pat; = e; =

case pat,, = e,
} lafter

13

Say we now want to allow binders (i.e, identifiers) in pattern matching and also optional guards.
The new patterns are defined by the following grammar.

pattern ::= simplePattern if guard
simplePattern ::= id | Cons(id, simplePattern) | Nil()

id is an identifier such as x, y etc. and guard is a boolean expression. The pattern evaluates to
true only if simplePattern matches the object reference at the top of the stack, and the guard
evaluates to true. Given a match case: “case Cons(x, _) if guard = e1”, the guard and the body
of a match case e; can use the binder z in the pattern of the match case. The binders of the
match cases that did not succeed can take any value.

c) [10 pts]| Define the function branchPat for the new patterns with binders and guards.
Assume that the names of binders in the patterns are distinct. You can refer to the
address of a binder = of a pattern using #z. For instance, istore_#x binds x to the value
at the top of the stack. You can also use the function branch(guard, tl, fl) that jumps to
tl if guard evaluates to true and to fi otherwise.

If pat = pat2 if guard,

branchPat(pat, tl, fl) = ?

If pat = x,

branchPat(pat, tl, fl) = ?

14

If pat = Cons(z, pat2),

branchPat(pat, tl, fl) =

15

Java byte code instructions

iload_#x Loads the integer value of the local variable x on the stack.

iconst_x Loads the integer constant x on the stack.

istore_#x Stores the current value on top of the stack in the local
variable in x

iadd Pop two (integer) values from the stack, add them and put
the result back on the stack.

isub Pop two (integer) values from the stack, subtract them and
put the result back on the stack.

ifXX L Pop one value from the stack, compare it zero according to
the operator XX. If the condition is satisfied, jump to the
instruction given by label L. XX € { eq, It, le, ne, gt, ge,
null, nonnull }

if icmpXX L Pop two values from the stack and compare against each
other. Rest as above.

goto L Unconditional jump to instruction given by the label L.

dup Duplicate the word currently at the top of the stack.

pop Discard the word currently at the top of the stack.

getfield #field

consume an object reference from stack, then dereference
the field of that object given by (field,class) stored in the
#field pointer in the constant pool and put the value of the
field on the stack.

putfield #feld

consume an object reference obj and a value v from the stack
and store v it in the #field of obj.

instanceof #classld

consume an object reference from stack and push 1 onto the
stack if it is an instance of the class pointed to by the offset
#classld in the constant pool. Otherwise, push 0 onto the
stack.

aload_#x

loads a reference onto the stack from a local variable #x

astore_#£x

stores a reference at the top of the stack to a local variable

#x

16

