Computer Language Processing

Exercise Sheet 05

October 26, 2022
Welcome to the fifth exercise session of CS320!

Exercise 1

Consider an expression language with a halving operator on even numbers. We are designing an
operational semantics and a type system that ensures that we never halve an odd number.

« expr ::= half(expr) | expr + expr | INTEGER
The values of our language are all integers. We denote values by n and k.

We will design the operational semantics of our language. Semantics should define rules that
apply to as many expressions as possible subject to the following constraints:

+ Our operational semantics should not permit halving unless the value of an integer
constant is even

« It should only perform evaluation of operands from left to right

Find a minimal subset of the operational semantics rules below that describe this behavior

e~ e
half(e) ~ €’ (A)
n is a value n = 2k
half(n) ~ k (B)
n is a value
. n
half(n) ~ lEJ ®)

half(e) ~ half(e”)

half(e) ~~ €’ (D)
e~ e
half(e) ~ half(e’) (E)

1

e’ ~ half(e)

half(e) ~~ ¢’ (F)
n; is a value n, is a value k=n;+n, n; is odd
ny +ny ~>» k (G)
7 .
e~e n is a value

n+te~n+e (H)

/

€ €y
e+ e~ e + € @

n, is a value n, is a value k=n;+n, n, is even n, is even
ny + ny ~» k (J)
n, is a value n, is a value k=n,+n,

ny + ny ~> k (K)

/

€ v €
er+e, ~ e + e (L)

Exercise 2

Consider a simple programming language with integer arithmetic, boolean expressions and
user-defined functions.

t :=true| false|c
|t==t|t+t
|t &&t|if (t)telset
| f(t,...0) | x

Where ¢ represents integer literals, == represents equality (between integers, as well as
between booleans), + represents the usual integer addition and && represents conjunction.
The meta-variable f refers to names of user-defined function and x refers to names of variables.
You may assume that you have a fixed environment e which contains information about
user-defined functions (i.e. the function arguments and the function body).

1) Inductively define the substitution operation for your terms, which replaces every free
occurrence of a variable in an expression by an expression without free variables.

The rule for substitution in an addition is provided as an example. Here, t[x := e] denotes the
substitution of every free occurrence of x by e in t.

hlx :=e]—> 1t Llx :=e]—>t,

(th+B)x :=e]> (@ +1)

2) Write the operational semantics rules for the language, assuming call-by-name semantics
for function calls. In call-by-name semantics, the arguments of a function are not evaluated
before the call. In your operational semantics, parameters in the function body are to merely
be substituted by the corresponding unevaluated argument expression.

Exercise 3

Consider the following grammar and evaluation rules for untyped lambda calculus with
call-by-value semantics:

« Values: v := Ax. t

« Terms: t :=x | Ax. t; | t t (left-associative)

ty ~> tl
ity ~ 1t (App1)

ty ~ 1
Vi~ L (App2)
(Ax. t) v ~ t[x — v] (APPABS)

We use Church encoding to represent numbers. In particular, we define the following terms:

co=As. Az. z
cg=As. Az. sz
c; = As. Az. s (s 2)
cs = As. Az. s (s (s 2))
plus = Am. An. As. Az.ms(ns z)

scc=An.As. Az.s (n s z)

1) Evaluate the expression (succ (succ ¢,)) step-by-step following the semantics above

2) Make minimal changes to the evaluation rules in order to match the call-by-name semantics.
With call-by-name semantics, a function can be applied to its argument even if the argument
is not completely reduced (ie. it is not a value). Repeat the evaluation of (succ (succ ¢;)) with
the new semantics.

3 As you might notice, we are still not able to obtain the reduced form c¢; = As. Az. s (s (s 2))
after evaluation with the call-by-name semantics. Add a new rule (to either call-by-value or
call-by-name) that would allow us to obtain such a form. Evaluate (succ (succ c,)) to verify
your answer.

https://en.wikipedia.org/wiki/Church_encoding

	Exercise 1
	Exercise 2
	Exercise 3

