EPFL Computer Language Processing Exam (CS-320)
November 2022

Keep in mind the following:

1.
2.

The exam is from 13:15 to 15:00. Do not open the exam until we tell you to.

Place your CAMIPRO card on your desk.

. Put all electronic devices in a bag away from the bench.

Werite your final answers using a permanent pen (no graphite, no “frixion” pen).

. The only written material you are allowed to use in the exam is one sheet (two A4 pages)

of any content that you prepare, either hand-written or printed.

Fill in all your answers on the given exam sheet. Do not submit additional sheets. Do
not unstaple the sheets.

Each question is scored independently. When you need to circle answers, then circling the
correct set of answers gives you full points. If you circle some of the wrong answers or do
not circle all the correct answers, you will obtain zero points on that question.

. We advise you to first solve questions that you find easier.

The maximal number of points on the exam is 30.

How to circle answers:

@ One correct solution; use hollow circle to circle the number only
2. Wrong answer; leave as is
@ Another correct solution; use hollow circle to circle the number only

4. Another wrong answer; leave as is

Write your full name on the line below:

Write your SCIPER on the line below:




Lexical Analysis

1 Longest-Match Rule (2pt)

Consider the lexical analyzer accepting sequences over the alphabet A = {0,1,.}, with token
classes defined by following regular expressions (where float constants have only one decimal
place):

float ::= (0| 1)*. (0 | 1)7
int::=1(0|1)*
zero ;=0

Note that in the notation above, the parentheses ), (as well as *,”, | are not part of the input alphabet
but part of the notation for regular expressions.

Circle numbers next to correct statements regarding the rules above, assuming the longest match
rule is applied:

1. 100.00 will be tokenized to sequence float
2. 100.00.1 will be tokenized to sequence float, zero, float
3. 10.10 will be tokenized to sequence float, int

4. 011.0 will be tokenized to sequence zero, float



2 Epsilon Closure (4pt)

Consider the following representation of a NFA (non-deterministic finite automaton) in Scala

abstract class Transition

type State = Int

case class Epsilon(to: State) extends Transition

case class CharTransition(char: Char, to: State) extends Transition

case class NFA(initial: State, accepting: Set[State], delta: Map[State, Set[Transition]]) {
def transitions(from: State): Set[Transition] = delta.getOrElse(from, Set.empty)

def successors(from: State, visited: Set[State]): Set[State] =
transitions(from).collect { case Epsilon(to) if !visited.contains(to) = to }

def epsilonClosure(states: Set[State]) =
def epsilonClosureRec(states: Set[State], acc: Set[State]): Set[State] = ???
epsilonClosureRec(states, Set.empty)

The alphabet of our NFA is the Char type in Scala. Each state in the NFA is represented by
an integer and a set of transitions to other states. A transition results in a destination state and is
labeled either by € or a character ¢ : Char. We would like to complete the function epsilonClosure
(which finds states reachable through epsilon transitions), so that it matches the definition seen in
class. Circle all correct implementations of epsilonClosureRec among these, if any:

1. def epsilonClosureRec(states: Set[State], acc: Set[State]): Set[State] =
states.foldLeft(acc ++ states)((foldAcc, state) =
epsilonClosureRec(successors(state, foldAcc), foldAcc))

2. def epsilonClosureRec(states: Set[State], acc: Set[State]): Set[State] =
states.foldLeft(acc ++ states)((foldAcc, state) =
epsilonClosureRec(successors(state, acc), foldAcc))

Now circle all correct implementations among these two (if any):

1. def epsilonClosureRec(states: Set[State], acc: Set[State]): Set[State] =
val expansion = states.flatMap(state = successors(state, acc))
if expansion.size > 0 then epsilonClosureRec(expansion, acc ++ states) else acc ++ states

2. def epsilonClosureRec(states: Set[State], acc: Set[State]): Set[State] =
val expansion = states.flatMap(state = successors(state, acc))
if expansion.size > 0 then epsilonClosureRec(expansion, acc ++ states) else acc

See next page for excerpts from the standard library reference for foldLeft and collect.

3



o def foldLeft[B](z: B)(op: (B, A) = B): B

Applies a binary operator to a start value and all elements of this set, going left to right.

B the result type of the binary operator.

z the start value.

op the binary operator.

returns the result of inserting op between consecutive elements of this set, going left
to right with the start value z on the left: op(...op(z, x1), X2, ..., xn) where x1, ..., xn are
the elements of this set. Returns z if this set is empty.

¢ def collect[B](pf: PartialFunction[A, B]): Set[B]

Builds a new set by applying a partial function to all elements of this set on which the
function is defined.

— B the element type of the returned set.

— pf the partial function which filters and maps the set. It acts both as a filter (by filtering
out elements for which the function is not defined) and as a mapping.

— returns a new set resulting from applying the given partial function pf to each element
on which it is defined and collecting the results. The order of the elements is preserved.



LL(1) Parsing

First, consider the following grammar with non-terminals S,A and terminals EOF, ), (,], [.
S ::= AEOF
Au=(A)A|A[A] e

3 Circle all true statements about the grammar above (2pt)

L. “[JO(D]” is accepted by the grammar
2. The grammar is LL(1)

3. The grammar is ambiguous

4. NULLABLE(A) == true

5. NULLABLE(S) == true

4 Circle the correct answer (1pt)
1. FIRST(S) == { EOF }
2. FIRST(S)=={ (., [}
3. FIRST(S)=={ (,),EOF }
4. FIRST(S)=={ (,[,EOF }

5. FIRST(S)=={(,),[,]1,EOF }

5 Circle the correct answer (1pt)
1. FOLLOW(A)=={),]1}
2. FOLLOW(A) == {), ], EOF }
3. FOLLOW(A)=={ (,[.).]}
4. FOLLOW(A) == { (, [, ], EOF }
5. FOLLOW(A)=={(,[,),], EOF }



6 Fill the LL(1) parsing table for the above grammar (2pt)

EOF ( ) [ ]

Now consider the following different grammar:
S ::=B EOF
B ::=(B)B | empty

where empty is a special keyword.
A student writes a parser in Scala for this language and implements the following case classes

case class B(children: Either[(parOpenToken, B, parCloseToken, B),
EmptyKW])

where parOpenToken, parCloseToken, EmptyKW are types representing the tokens (, ), empty.

7 Circle all the correct answers about the above class B (1pt)

1. The case class B is suitable as a node of an abstract syntax tree (AST) because it can be tra-
versed recursively and is the most abstract representation sufficient to interpret and compile
the program.

2. The case class B is suitable as a node of a parse tree because the children of each node
correspond to the right-hand side of the corresponding grammar rule.

3. The case class B is not suitable as a node of a parse tree because it is too abstract for this
purpose.

4. The case class B is not suitable as a node of an abstract syntax tree (AST) because it contains
unnecessary terminals.



Now consider the following grammar:

S ::=CEOF

C ::= (IntegerLiteral) + C | (IntegerLiteral)

with terminals (IntegerLiteral), +, EOF.
The student implements the following case class:

case class C(children:Either[(Int, C), Int])

8 Circle all correct answers about the above case class C (1pt)

1.

The class C is suitable as a node of an abstract syntax tree (AST) because it represents the
information about the program that suffices to interpret and compile it.

The class C is suitable as a node of the parse tree because the children of each node corre-
spond to the right-hand side of the corresponding grammar rule.

The class C is not suitable as a node of the AST because it contains unnecessary terminals.

The class C does not represent a parse tree node because it does not represent all terminals.



CYK Parsing

9 Properties of Grammars (1pt)

Circle all correct answers.

S:=(8S) 1. There are exactly 3 unproductive symbols
2. There is exactly 1 unreachable symbol
R:u=(T)|T . )
3. There are exactly 3 unit productions
Ti=XorX|XZX|e 4. There is exactly 1 unit production
X ::=true | false | (X)) 5. There are exactly 2 unproductive symbols
Y o= or 6. There are exactly 4 unreachable symbols
7. There are exactly 5 unreachable symbols
Z ::=and 3

7. is unreachable

Terminals are: ), (, or, true, false, and. Starting symbol is S.

10 Is this grammar in Chomsky Normal Form (CNF)? (1pt)

Circle all correct answers.

1. No, because some rules do not have a valid number

of symbols on the right-hand side
Si:=¢|MN|OC
=<l | 2. Yes, because only the starting symbol has £ on the

S ::= (IntegerLiteral) right hand side and every other right hand side either
has exactly two non-nonterminals, or exactly one ter-

O = ( minal.
C:=) 3. No, because the starting symbol has an ¢
M :: 4. No, because there is a unit production

5. No, because integer literals are not allowed in CNF
N ::= (IntegerLiteral)

6. No, because the starting symbol should not have a

terminal on its right-hand side

Terminals are: ), (, —, (IntegerLiteral). Starting symbol is S.

8



11 Is this grammar in Chomsky Normal Form (CNF)? (1pt)

Circle all correct answers.

1. No, because some rules do not have a valid number of sym-

Su=¢|C bols on the right-hand side
C:=C,B 2. Yes, because every rule has at most 2 symbols on the right-
hand side, all terminals have an associated non-terminal,
Cp=AX only the starting symbol is nullable, and there are no unit
X 1= true | false productions, unproductive or unreachable symbols
A= 3. No, because there is a unit production
B =] 4. No, because not all terminals are on the right-hand side
5. No, because the starting symbol has an ¢
Terminals are: |, [, true, false. Starting symbol is S.

12 Fill the CYK parse table for the word ‘‘aba’ and the follow-
ing grammar. (2pt)

Su=AB|#A|c = J[ & J[ = |
b= [ J J ]
A=t Alc | |

B:=t,B|b [ |
ty=b | |

Terminals are: a, b, c.



13 What grammars could we obtain from the Initial Gram-
mar after reducing the number of symbols on all right-hand
sides to at most two? (2pt)

Assume the algorithm that introduces no more non-terminals than the one presented in the lecture.
Circle numbers for all grammars that could be obtained.

2. Grammar:
1. Grammar:
S:=0LC]|a
Initial Grammar: S:=X|a
L:=LVS|S
S:=(L)|a L:=LV|S
O=(L
L:=L,S|S V=S
C=)
X:u=(L)
V=,
5. Grammar:
4. Grammar:
. Grammar: S:=X|a
S:=Y|a
S:=0C]a L:VS]|S
L:=J|S
L:=VS|S V=L,
X=(L
O=(L X=0C
Y=X)
C=) O=(
Z=L,
V=L, C=LK
I=7ZS
K=)

Terminals are: a, ), ( and the comma , .

10




Type Checking

14 Typing Rules (3pt)

Complete (on the next page) the type derivation for the body of the function f.
def f(x: Int, u: Int, v: Int): Int = {
if (x <u){
u
}elseif (v < x) {
v
} else {

}

Use the types rules shown below.

(,T)eT ey :Int I'Fey: Int I'Fe:Int I'Fey:Int

'x:T I'eg+ey: Int I'ey * eg:Int

' ey : Bool ' ey : Bool I'eq: Bool ' ey : Bool
I'kFe && eq: Bool I'ke || es: Bool

I'ke:Int I'key: Int I'=b: Bool I'e : T I'ey: T
I'Fe; <ey: Bool IC'Eif (b) e, elseey : T

11



qug T ISP a(r > a)JIISP n(n > T)J - I

4 Jurn o4 J joog > - J
40 41 “ 40 I3 (qur‘n) urin o J urT 4 J
i ) 1> ) o4 ST I3 (qur‘n) 12 (pug‘z)

I>(C ) I>C )

N
—



15 Type Inference (3pt)

For which of the following expressions does type inference using unification succeed? For the +
operator, assume the type rules as in the previous question. Circle the correct answers.

. x=y=y(z=06)+y()
2. g=f=x= gfX))
3. x=y=(z=Y),Yy)

4. g=1=x= g(f(x)) + f(g(x)) + x

13



16 Unification Algorithm (3pt)

Consider a programming language with pairs and the usual typing rules, as in the lecture. Apply
the unification algorithm on the following function:

def swap(t) = {
(t.2,t._1)
}

assuming the following type variables assigned to tree nodes:

((t: 7).2: 7, (. 7)._1: T): 73

Write each step of the unification algorithm, mentioning what rule of the algorithm you are apply-
ing. We provide you with the initial step.

1. T = (7'10,7'1)
T = (727720)
73 = (71, T2)

Write down an expression for the argument (t) and return type of swap in terms of types 7; and 75:

(argument) t

(result) swap(t)

14



