CS 320
Computer Language Processing
Exercises: Weeks 1 and 2

February 28, 2025

1 Languages and Automata

Exercise 1 For each of the following expressions on sets of words, match them
to a property P that characterizes them, i.e., the language is exactly the set of
words {w | P(w)}.

Languages:

1. {a,ab}*

2. {aa}* U{aaa}*

3. atbt

Predicates in set notation:

{w|Vi.0 <i<|w|Awgy =b = (i >0Aw;_1) =a)}

{w | Viwg =b = wi-_1) = a}

{w] 3.0 <i < |w| ANwgy =bAwg—1) = a}

{w] (Jw|=0 mod 2V |w| =0 mod 3) AVi.0 <i< |w| = wg =a}

{w|Vi.0 <i<|w|Awiy =a = wiy = b}

= =5 0 o w =

{w] 0 <i<|w-1ANVy0<y<i = wy =a)A(Vyi<y<
w| = wg) = b)}

Exercise 2 For each the following languages, construct an NFA A that rec-
ognizes them, i.e. L(A) = L;:

1. Li: binary strings divisible by 3

2. Ls: binary strings divisible by 4

3. Lg: {(w1 ®ws) | wy € L1 Awg € Loy Awy| = |wal}

where @ is the bitwise-xor operation on binary strings.

Exercise 3 Give a verbal and a set-notational description of the language
accepted by each of the following automata. You can assume that the alphabet
is ¥ = {a, b}.

1. A
b b a,b
a A a
start qo q1 q2
o/
2. Ao
2 Lexing

Consider a simple arithmetic language that allows you to compute one arith-
metic expression, construct conditionals, and let-bind expressions. An example
program is:

let x = 3 in
let y = ite (x > 0) (x * x) 0 in
(2 % x) +y

The lexer for this language must recognize the following tokens:

keyword: let|in|ite
op: +|-|*]|/
comp: > [<| =] <= |>=
equal: =

lparen: (

rparen:)
id: letter - (letter | digit)*

number : digit™

skip: whitespace

For simplicity, letter is a shorthand for the set of all English lowercase letters
{a — z} and digit is a shorthand for the set of all decimal digits {0 — 9}.

Exercise 4 For each of the tokens above, construct an NFA that recognizes
strings matching its regular expression.

A lexer is constructed by combining the NFAs for each of the tokens in
parallel, assuming maximum munch. The resulting token is the first NFA in the
token order that accepts a prefix of the string. Thus, tokens listed first have
higher priority. We then continue lexing the remaining string. You may assume
that the lexer drops any skip tokens.

Exercise 5 For each of the following strings, write down the sequence of tokens
that would be produced by the constructed lexer, if it succeeds.

1.
2.

5.

3.
4

let x =5 in x + 3

letbx2

xin

<===><==

Exercise 6 Construct a string that would be lexed differently if we ran the
NFAs in parallel and instead of using token priority, simply picked the longest
match.

	Languages and Automata
	Lexing

