
CS 320

Computer Language Processing

Exercises: Weeks 1 and 2

February 28, 2025

1 Languages and Automata

Exercise 1 For each of the following expressions on sets of words, match them
to a property P that characterizes them, i.e., the language is exactly the set of
words {w | P (w)}.

Languages:

1. {a, ab}∗

2. {aa}∗ ∪ {aaa}∗

3. a+b+

Predicates in set notation:

A. {w | ∀i.0 ≤ i ≤ |w| ∧ w(i) = b =⇒ (i > 0 ∧ w(i−1) = a)}

B. {w | ∀i.w(i) = b =⇒ w(i−1) = a}

C. {w | ∃i.0 < i < |w| ∧ w(i) = b ∧ w(i−1) = a}

D. {w | (|w| = 0 mod 2 ∨ |w| = 0 mod 3) ∧ ∀i.0 ≤ i < |w| =⇒ w(i) = a}

E. {w | ∀i.0 ≤ i ≤ |w| ∧ w(i) = a =⇒ w(i+1) = b}

F. {w | ∃i.0 < i < |w| − 1 ∧ (∀y.0 ≤ y ≤ i =⇒ w(y) = a) ∧ (∀y.i < y <
|w| =⇒ w(y) = b)}

Exercise 2 For each the following languages, construct an NFA A that rec-
ognizes them, i.e. L(A) = Li:

1. L1: binary strings divisible by 3

2. L2: binary strings divisible by 4

3. L3: {(w1 ⊕ w2) | w1 ∈ L1 ∧ w2 ∈ L2 ∧ |w1| = |w2|}

where ⊕ is the bitwise-xor operation on binary strings.

1

Exercise 3 Give a verbal and a set-notational description of the language
accepted by each of the following automata. You can assume that the alphabet
is Σ = {a, b}.

1. A1

q0start q1 q2
a a

a, bb b

2. A2

q0start q1 q2
a

b

a, bb

a

2 Lexing

Consider a simple arithmetic language that allows you to compute one arith-
metic expression, construct conditionals, and let-bind expressions. An example
program is:

let x = 3 in

let y = ite (x > 0) (x * x) 0 in

(2 * x) + y

The lexer for this language must recognize the following tokens:

keyword : let | in | ite
op : + | - | * | /

comp : > | < | == | <= | >=
equal : =

lparen : (

rparen :)

id : letter · (letter | digit)∗

number : digit+

skip : whitespace

For simplicity, letter is a shorthand for the set of all English lowercase letters
{a− z} and digit is a shorthand for the set of all decimal digits {0− 9}.

Exercise 4 For each of the tokens above, construct an NFA that recognizes
strings matching its regular expression.

2

A lexer is constructed by combining the NFAs for each of the tokens in
parallel, assuming maximum munch. The resulting token is the first NFA in the
token order that accepts a prefix of the string. Thus, tokens listed first have
higher priority. We then continue lexing the remaining string. You may assume
that the lexer drops any skip tokens.

Exercise 5 For each of the following strings, write down the sequence of tokens
that would be produced by the constructed lexer, if it succeeds.

1. let x = 5 in x + 3

2. let5x2

3. xin

4. ==>

5. <===><==

Exercise 6 Construct a string that would be lexed differently if we ran the
NFAs in parallel and instead of using token priority, simply picked the longest
match.

3

	Languages and Automata
	Lexing

