_ Gl

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

Failure Handling with Actors

Principles of Reactive Programming

Roland Kuhn



Failure Handling in Asynchronous Systems

Where shall failures go?

> reify as messages
» send to a known address



Failure Handling in Asynchronous Systems
Where shall failures go? @O‘S CO'—P
> reify as messages

» send to a known address _
|\

The Actor Model is anthropomorphic:
> Actors work together in teams (systems) @ @J—or;@

» individual failure is handled by the team leader [
@Seé




Supervision

Resilience demands containment of and automatic response to failure.
failed Actor is terminated or restarted
decision must be taken by one other Actor

supervised Actors form a tree structure

the supervisor needs to create its subordinate ﬂ @ O

vV v vV



Supervisor Strategy

In Akka the parent declares how its child Actors are supervised:

class Manager extends Actor {
override val supervisorStrategy = OneForOneStrategy() {

case _: DBException => Restart // reconnect to DB
case _: ActorKilledException => Stop
case _: ServiceDownException => Escalate

context.actorOf (Props[DBActor], ”db”)

ImportantServiceActor], ”service”)

context.actorOf (Props



Supervisor Strategy (cont'd)

Failure is sent and processed like a message:

class Manager extends Actor {
var restarts = Map.empty[ActorRef, Int].withDefaultValue(9)
override val supervisorStrategy = OneForOneStrategy() {
case _: DBException =>
restarts(sender) match {
case toomany if toomany > 10 =>
restarts -= sender; Stop
case n =>
restarts = restarts.updated(sender, n + 1); Restart



Supervisor Strategy (cont'd)

If decision applies to all children: Al1ForOneStrategy Smper

Simple rate trigger included: 5 \
78l
» allow a finite number of restarts @ @

» allow a finite number of restarts in a time window

» if restriction violated then Stop instead of Restart



Actor ldentity

Recovery by restart requires stable identifier to refer to the service:

> in Akka the ActorRef stays valid after a restart
» in Erlang a name is registered for the current PID



Actor ldentity

Recovery by restart requires stable identifier to refer to the service:

> in Akka the ActorRef stays valid after a restart
» in Erlang a name is registered for the current PID

What does restart mean?

> expected error conditions are handled explicitly
» unexpected error indicate invalidated actor state
> restart will install initial behavior / state



Actor Lifecycle

> start
> (restart)®

> stop

new Ac&or

ore Stark 1S
\ % ‘FQLL ?‘
' (Restar
I PTQQQS&QT{ T —
Tnew Ador €
' po.:,lr Restarty
| s%op N
¢
@oswlgéop




Actor Lifecycle Hooks

trait Actor {

def preStart(): Unit = {}
def preRestart(reason: Throwable, message: Option[Any]): Unit = {

context.children foreach (context.stop(_))
postStop()

)
def postRestart(reason: Throwable): Unit = {

preStart()

)
def postStop(): Unit = {}



The Detault Lifecycle

class DBActor extends Actor {
val db = DB.openConnection(...)

override def postStop(): Unit = {
db.close()

¥

In this model the actor is fully reinitialized during restart.



Lifecycle Spanning Restarts

class Listener(source: ActorRef) extends Actor {

override
override
override
override

def preStart() { source ! RegisterListener(self) }

def preRestart(reason: Throwable, message: Option[Any]) {}

def
def

nostRestart(reason: Throwable) {}

postStop() { source ! UnregisterListener(self) }

Actor-local state cannot be kept across restarts, only external state can be
managed like this.

Child actors not stopped during restart will be restarted recursively.



