
Actor Composition

Principles of Functional Programming
Roland Kuhn



The Type of an Actor

The interface of an Actor is defined by its accepted message types, the
type of an Actor is structural.
This structure may change over time defined by a protocol.



The Type of an Actor

The interface of an Actor is defined by its accepted message types, the
type of an Actor is structural.
This structure may change over time defined by a protocol.
Superficially current Actor implementations are unityped:

▶ sending a message is (Any => Unit)
▶ behavior is PartialFunction[Any, Unit]

This limitation is not a fundamental.



Actor Composition

Actor Systems are composed like human organizations.
Actors are composed on a protocol level.
An Actor can

▶ translate and forward requests
▶ translate and forward replies
▶ split up requests and aggregate replies



The Customer Pattern

▶ fundamental request–reply pattern
▶ customer address included in the (original) request
▶ allows dynamic composition of actor systems



Interceptors

class AuditTrail(target: ActorRef) extends Actor with ActorLogging {
def receive = {

case msg =>
log.info(”sent {} to {}”, msg, target)
target forward msg

}
}

A one-way proxy does not need to keep state.



The Ask Pattern

import akka.pattern.ask

class PostsByEmail(userService: ActorRef) extends Actor {
implicit val timeout = Timeout(3.seconds)
def receive = {

case Get(email) =>
(userService ? FindByEmail(email)).mapTo[UserInfo]
.map(info => Result(info.posts.filter(_.email == email)))
.recover { case ex => Failure(ex) }
.pipeTo(sender())

}
}



Result Aggregation

class PostSummary(...) extends Actor {
implicit val timeout = Timeout(500.millis)
def receive = {

case Get(postId, user, password) =>
val response = for {
status <- (publisher ? GetStatus(postId)).mapTo[PostStatus]
text <- (postStore ? Get(postId)).mapTo[Post]
auth <- (authService ? Login(user, password)).mapTo[AuthStatus]

} yield
if (auth.successful) Result(status, text)
else Failure(”not authorized”)

response pipeTo sender()
}

}



Risk Delegation

▶ create subordinate to perform dangerous task
▶ apply lifecycle monitoring
▶ report success/failure back to requestor
▶ ephemeral actor shuts down after each task



Example: File Writer

class FileWriter extends Actor {
var workerToCustomer = Map.empty[ActorRef, ActorRef]
override val supervisorStrategy = SupervisorStrategy.stoppingStrategy
def receive = {

case Write(contents, file) =>
val worker = context.actorOf(Props(new FileWorker(contents, file, self)))
context.watch(worker)
workerToCustomer += worker -> sender()

case Done => workerToCustomer.get(sender()).foreach(_ ! Done)
workerToCustomer -= sender()

case Terminated(worker) => workerToCustomer.get(worker).foreach(_ ! Failed)
workerToCustomer -= worker

}
}



Façade

▶ translation
▶ validation
▶ rate limitation
▶ access control


