
The Actor Model

Principles of Functional Programming
Roland Kuhn

What is an Actor?

The Actor Model represents objects and their interactions, resembling
human organizations and built upon the laws of physics.

What is an Actor?

The Actor Model represents objects and their interactions, resembling
human organizations and built upon the laws of physics.
An Actor1

▶ is an object with identity
▶ has a behavior
▶ only interacts using asynchronous message passing

1Hewitt, Bishop, Steiger: A Universal Modular Actor Formalism for Artificial
Intelligence, IJCAI 1973

The Actor Trait

type Receive = PartialFunction[Any, Unit]

trait Actor {
def receive: Receive
...

}

The Actor type describes the behavior of an Actor, its response to
messages.

A Simple Actor

class Counter extends Actor {
var count = 0
def receive = {

case ”incr” => count += 1
}

}

This object does not exhibit stateful behavior.

Making it Stateful

Actors can send messages to addresses (ActorRef) they know:

class Counter extends Actor {
var count = 0
def receive = {

case ”incr” => count += 1
case (”get”, customer: ActorRef) => customer ! count

}
}

How Messages are Sent

trait Actor {
implicit val self: ActorRef
def sender(): ActorRef
...

}

abstract class ActorRef {
def !(msg: Any)(implicit sender: ActorRef = Actor.noSender): Unit
def tell(msg: Any, sender: ActorRef) = this.!(msg)(sender)
...

}

Sending a message from one actor to the other picks up the sender’s
address implicitly.

Using the Sender

class Counter extends Actor {
var count = 0
def receive = {

case ”incr” => count += 1
case ”get” => sender() ! count

}
}

The Actor’s Context

The Actor type describes the behavior, the execution is done by its
ActorContext.

trait ActorContext {
def become(behavior: Receive, discardOld: Boolean = true): Unit
def unbecome(): Unit
...

}

trait Actor {
implicit val context: ActorContext
...

}

Changing an Actor’s Behavior

class Counter extends Actor {
def counter(n: Int): Receive = {

case ”incr” => context.become(counter(n + 1))
case ”get” => sender() ! n

}
def receive = counter(0)

}

Changing an Actor’s Behavior

class Counter extends Actor {
def counter(n: Int): Receive = {

case ”incr” => context.become(counter(n + 1))
case ”get” => sender() ! n

}
def receive = counter(0)

}

Functionally equivalent to previous version, with advantages

▶ state change is explicit
▶ state is scoped to current behavior

Similar to “asynchronous tail-recursion”.

Creating and Stopping Actors

trait ActorContext {
def actorOf(p: Props, name: String): ActorRef
def stop(a: ActorRef): Unit
...

}

Actors are created by actors.
“stop” is often applied to “self”.

An Actor Application

class Main extends Actor {
val counter = context.actorOf(Props[Counter], ”counter”)

counter ! ”incr”
counter ! ”incr”
counter ! ”incr”
counter ! ”get”

def receive = {
case count: Int =>

println(s”count was $count”)
context.stop(self)

}
}

The Actor Model of Computation

Upon reception of a message the actor can do any combination of the
following:

▶ send messages
▶ create actors
▶ designate the behavior for the next message

