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Testing Actors

Tests can only verify externally observable effects.

class Toggle extends Actor {
def happy: Receive = {

case ”How are you?” =>
sender() ! ”happy”
context become sad

}
def sad: Receive = {

case ”How are you?” =>
sender() ! ”sad”
context become happy

}
def receive = happy

}



Akka’s TestKit (1)

TestProbe as remote-controlled actor.

implicit val system = ActorSystem(”TestSys”)
val toggle = system.actorOf(Props[Toggle])
val p = TestProbe()
p.send(toggle, ”How are you?”)
p.expectMsg(”happy”)
p.send(toggle, ”How are you?”)
p.expectMsg(”sad”)
p.send(toggle, ”unknown”)
p.expectNoMsg(1.second)
system.shutdown()



Akka’s TestKit (2)

Running a test within a TestProbe:

new TestKit(ActorSystem(”TestSys”)) with ImplicitSender {
val toggle = system.actorOf(Props[Toggle])
toggle ! ”How are you?”
expectMsg(”happy”)
toggle ! ”How are you?”
expectMsg(”sad”)
toggle ! ”unknown”
expectNoMsg(1.second)
system.shutdown()

}



Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods



Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods

class Receptionist extends Actor {
def controllerProps: Props = Props[Controller]
...
def receive = {

...
val controller = context.actorOf(controllerProps, ”controller”)
...

}
}



Testing Actors with Dependencies

Accessing the real DB or production web services is not desirable:

▶ one simple solution is to add overridable factory methods

class Getter extends Actor {
...
def client: WebClient = AsyncWebClient
client get url pipeTo self
...

}



Testing Interaction with the Parent

Create a step-parent:

class StepParent(child: Props, probe: ActorRef) extends Actor {
context.actorOf(child, ”child”)
def receive = {

case msg => probe.tell(msg, sender())
}

}



Inserting a Foster-Parent

For when parent–child communication should occur, but monitored:

class FosterParent(child: Props, probe: ActorRef) extends Actor {
val child = context.actorOf(child, ”child”)
def receive = {

case msg if sender() == context.parent =>
probe forward msg
child forward msg

case msg =>
probe forward msg
context.parent forward msg

}
}



Testing Actor Hierarchies

Start verifying leaves, work your way up:

▶ “Reverse Onion Testing”


