
Designing Actor Systems

Principles of Functional Programming
Roland Kuhn

Starting Out with the Design

Imagine giving the task to a group of people, dividing it up.
Consider the group to be of very large size.
Start with how people with different tasks will talk with each other.
Consider these “people” to be easily replaceable1.
Draw a diagram with how the task will be split up, including
communication lines.

1This is where our abstract people differ from real people.

Example: the Link Checker

Write an actor system which given a URL will recursively download the
content, extract links and follow them, bounded by a maximum depth; all
links encountered shall be returned.

Plan of Action

▶ Write web client which turns a URL into a HTTP body
asynchronously.
We will be using ”com.ning” % ”async-http-client” % ”1.7.19”

▶ Write a Getter actor for processing the body.
▶ Write a Controller which spawns Getters for all links encountered.
▶ Write a Receptionist managing one Controller per request.

The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient
def get(url: String): String = {

val response = client.prepareGet(url).execute().get
if (response.getStatusCode < 400)

response.getResponseBodyExcerpt(131072)
else throw BadStatus(response.getStatusCode)

}

The Web Client (1)

Let us start simple:

val client = new AsyncHttpClient
def get(url: String): String = {

val response = client.prepareGet(url).execute().get
if (response.getStatusCode < 400)

response.getResponseBodyExcerpt(131072)
else throw BadStatus(response.getStatusCode)

}

Blocks the calling actor until the web server has replied:

▶ actor is deaf to other requests, e.g. cancellation does not work
▶ wastes one thread—a finite resource

The Web Client (2)

private val client = new AsyncHttpClient
def get(url: String)(implicit exec: Executor): Future[String] = {

val f = client.prepareGet(url).execute();
val p = Promise[String]()
f.addListener(new Runnable {

def run = {
val response = f.get
if (response.getStatusCode < 400)
p.success(response.getResponseBodyExcerpt(131072))
else p.failure(BadStatus(response.getStatusCode))

}
}, exec)
p.future

}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.

Finding Links

// using ”org.jsoup” % ”jsoup” % ”1.8.1”
import org.jsoup.Jsoup
import import scala.collection.JavaConverters._

def findLinks(body: String): Iterator[String] = {
val document = Jsoup.parse(body, url)
val links = document.select(”a[href]”)
for {

link <- links.iterator().asScala
} yield link.absUrl(”href”)

}

The Getter Actor (1)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

val future = WebClient.get(url)
future onComplete {

case Success(body) => self ! body
case Failure(err) => self ! Status.Failure(err)

}

...
}

The Getter Actor (2)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

val future = WebClient.get(url)
future.pipeTo(self)

...
}

The Getter Actor (3)

class Getter(url: String, depth: Int) extends Actor {

implicit val exec = context.dispatcher

WebClient get url pipeTo self

...
}

The Getter Actor (4)

class Getter(url: String, depth: Int) extends Actor {
...
def receive = {

case body: String =>
for (link <- findLinks(body))
context.parent ! Controller.Check(link, depth)

stop()
case _: Status.Failure => stop()

}
def stop(): Unit = {
context.parent ! Done
context.stop(self)

}
}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.

Actor-Based Logging

▶ Logging includes IO which can block indefinitely
▶ Akka’s logging passes that task to dedicated actors
▶ supports ActorSystem-wide levels of debug, info, warning, error
▶ set level using setting akka.loglevel=DEBUG (for example)

class A extends Actor with ActorLogging {
def receive = {

case msg => log.debug(”received message: {}”, msg)
}

}

The Controller

class Controller extends Actor with ActorLogging {
var cache = Set.empty[String]
var children = Set.empty[ActorRef]
def receive = {

case Check(url, depth) =>
log.debug(”{} checking {}”, depth, url)
if (!cache(url) && depth > 0)
children += context.actorOf(Props(new Getter(url, depth - 1)))

cache += url
case Getter.Done =>
children -= sender()
if (children.isEmpty) context.parent ! Result(cache)

}
}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.

Handling Timeouts

import scala.concurrent.duration._

class Controller extends Actor with ActorLogging {
context.setReceiveTimeout(10.seconds)
...
def receive = {

case Check(...) => ...
case Getter.Done => ...
case ReceiveTimeout => children foreach (_ ! Getter.Abort)

}
}

The receive timeout is reset by every received message.

Handling Abort in the Getter

class Getter(url: String, depth: Int) extends Actor {
...
def receive = {

case body: String =>
for (link <- findLinks(body)) ...
stop()

case _: Status.Failure => stop()
case Abort => stop()

}
def stop(): Unit = {
context.parent ! Done
context.stop(self)

}
}

The Scheduler

Akka includes a timer service optimized for high volume, short durations
and frequent cancellation.

trait Scheduler {
def scheduleOnce(delay: FiniteDuration, target: ActorRef, msg: Any)

(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration)(block: => Unit)
(implicit ec: ExecutionContext): Cancellable

def scheduleOnce(delay: FiniteDuration, run: Runnable)
(implicit ec: ExecutionContext): Cancellable

... // the same for repeating timers
}

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)
}
...

}

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)
} ... }

Question: What is the problem with this code?

O it does not compile

O it is not thread-safe

O the scheduled code will not run

Adding an Overall Timeout (1)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(10.seconds) {

children foreach (_ ! Getter.Abort)
}
...

}

Accessing an actor’s state from outside its execution breaks encapsulation.

Adding an Overall Timeout (2)

class Controller extends Actor with ActorLogging {
import context.dispatcher
var children = Set.empty[ActorRef]
context.system.scheduler.scheduleOnce(10.seconds, self, Timeout)
...
def receive = {

...
case Timeout => children foreach (_ ! Getter.Abort)

}
}

How Actors and Futures Interact (1)

Future composition methods invite closing over the actor’s state:

class Cache extends Actor {
var cache = Map.empty[String, String]
def receive = {

case Get(url) =>
if (cache contains url) sender() ! cache(url)
else
WebClient get url foreach { body =>

cache += url -> body
sender() ! body

}
}

}

How Actors and Futures Interact (2)

class Cache extends Actor {
var cache = Map.empty[String, String]
def receive = {

case Get(url) =>
if (cache contains url) sender() ! cache(url)
else
WebClient get url map (Result(sender(), url, _)) pipeTo self

case Result(client, url, body) =>
cache += url -> body
client ! body

}
}

How Actors and Futures Interact (3)

class Cache extends Actor {
var cache = Map.empty[String, String]
def receive = {

case Get(url) =>
if (cache contains url) sender() ! cache(url)
else {
val client = sender()
WebClient get url map (Result(client, url, _)) pipeTo self

}
case Result(client, url, body) =>

cache += url -> body
client ! body

}
}

What we learned so far

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.
▶ Do not refer to actor state from code running asynchronously.

The Receptionist (1)

class Receptionist extends Actor {
def receive = waiting

val waiting: Receive = {
// upon Get(url) start a traversal and become running

}

def running(queue: Vector[Job]): Receive = {
// upon Get(url) apppend that to queue and keep running
// upon Controller.Result(links) ship that to client
// and run next job from queue (if any)

}
}

The Receptionist (2)

case class Job(client: ActorRef, url: String)
var reqNo = 0
def runNext(queue: Vector[Job]): Receive = {

reqNo += 1
if (queue.isEmpty) waiting
else {

val controller = context.actorOf(Props[Controller], s”c$reqNo”)
controller ! Controller.Check(queue.head.url, 2)
running(queue)

}
}

reqNo permeates all states but does not qualitatively change behavior: an
example for when using var may benefit.

The Receptionist (3)

def enqueueJob(queue: Vector[Job], job: Job): Receive = {
if (queue.size > 3) {

sender() ! Failed(job.url)
running(queue)

} else running(queue :+ job)
}

The Receptionist (4)

val waiting: Receive = {
case Get(url) => context.become(runNext(Vector(Job(sender(), url))))

}

def running(queue: Vector[Job]): Receive = {
case Controller.Result(links) =>

val job = queue.head
job.client ! Result(job.url, links)
context.stop(sender())
context.become(runNext(queue.tail))

case Get(url) =>
context.become(enqueueJob(queue, Job(sender(), url)))

}

Summary

▶ A reactive application is non-blocking & event-driven top to bottom.
▶ Actors are run by a dispatcher—potentially shared—which can also

run Futures.
▶ Prefer immutable data structures, since they can be shared.
▶ Prefer context.become for different states, with data local to the

behavior.
▶ Do not refer to actor state from code running asynchronously.

