=PrL

Lifecycle Monitoring and
The Error Kernel

Principles of Functional Programming

Roland Kuhn



Lifecycle Monitoring

The only observable transition occurs when stopping an actor:

» having an ActorRef implies liveness (at some earlier point)
P restarts are not externally visible
> after stop there will be no more responses



Lifecycle Monitoring

The only observable transition occurs when stopping an actor:

» having an ActorRef implies liveness (at some earlier point)
P restarts are not externally visible

> after stop there will be no more responses

No replies could also be due to communication failure, therefore Akka
supports Lifecycle Monitoring a.k.a. DeathWatch.

P> an Actor registers its interest using context.watch(target)
P it will receive a Terminated(target) message when target stops
> it will not receive any direct messages from target thereafter



The DeathWatch API

trait ActorContext {
def watch(target: ActorRef): ActorRef
def unwatch(target: ActorRef): ActorRef

case class Terminated private[akkal] (actor: ActorRef)
(val existenceConfirmed: Boolean, val addressTerminated: Boolean)
extends AutoReceiveMessage with PossiblyHarmful



Applying DeathWatch to Controller & Getter (1)

class Getter(url: String, depth: Int) extends Actor {

def receive = {
case body: String =>
for (link <- findLinks(body))
context.parent ! Controller.Check(link, depth)
context.stop(self)
case _: Status.Failure => context.stop(self)

}

Simply terminating when done uses DeathWatch as End-Of-Conversation.



The Children List

Each actor maintains a list of the actors it created:

» the child has been entered when context.actor0Of returns
» the child has been removed when Terminated is received
» an actor name is available IFF there is no such child

trait ActorContext {
def children: Iterable[ActorRef]
def child(name: String): Option[ActorRef]



Applying DeathWatch to Controller & Getter (2)

class Controller extends Actor with ActorlLogging {
override val supervisorStrategy = OneForOneStrategy(maxNrOfRetries = 5) {
case _: Exception => SupervisorStrategy.Restart
3
def receive = {
case Check(url, depth) =>
if (!cache(url) && depth > 0)
context.watch(context.actorOf (getterProps(url, depth - 1)))
cache += url
case Terminated(_.) =>
if (context.children.isEmpty) context.parent ! Result(cache)
case ReceiveTimeout => context.children foreach context.stop



Lifecycle Monitoring for Fail-Over

class Manager extends Actor {
def prime(): Receive = {
val db = context.actorOf(Props[DBActor], ”db”)
context.watch(db)

case Terminated(‘db‘) => context.become(backup())

3
def backup(): Receive = { ... }
def receive = prime()



The Error Kernel

Keep important data near the root, delegate risk to the leaves.

> restarts are recursive (supervised actors are part of the state)
> restarts are more frequent near the leaves
P> avoid restarting Actors with important state



Application to Receptionist (1)

» Always stop Controller if it has a problem.
> React to Terminated to catch cases where no Result was sent.
» Discard Terminated after Result was sent.



Application to Receptionist (1)

» Always stop Controller if it has a problem.
> React to Terminated to catch cases where no Result was sent.
» Discard Terminated after Result was sent.

class Receptionist extends Actor {

override def supervisorStrategy = SupervisorStrategy.stoppingStrategy



Application to Receptionist (2)

class Receptionist extends Actor {

def runNext(queue: Vector[Job]): Receive = {

regNo += 1

if (queue.isEmpty) waiting

else {
val controller = context.actorOf(controllerProps, s”c$regNo”)
context.watch(controller)
controller ! Controller.Check(queue.head.url, 2)
running(queue)



Application to Receptionist (3)

def running(queue: Vector[Job]): Receive = {

case Controller.Result(links) =>
val job = queue.head
job.client ! Result(job.url, links)
context.stop(context.unwatch(sender()))
context.become(runNext(queue.tail))

case Terminated(_.) =>
val job = queue.head
job.client ! Failed(job.url)
context.become(runNext(queue.tail))

case Get(url) =>
context.become(enqueueJob(queue, Job(sender(), url)))



Interjection: the EventStream (1)

Actors can direct messages only at known addresses.
The EventStream allows publication of messages to an unknown audience.

Every actor can optionally subscribe to (parts of ) the EventStream.

trait EventStream {
def subscribe(subscriber: ActorRef, topic: Class[_]): Boolean
def unsubscribe(subscriber: ActorRef, topic: Class[_]): Boolean
def unsubscribe(subscriber: ActorRef): Unit
def publish(event: AnyRef): Unit



Interjection: the EventStream (2)

class Listener extends Actor {
context.system.eventStream.subscribe(self, classOf[LogEvent])
def receive = {
case e: LogEvent => ...
3
override def postStop(): Unit = {
context.system.eventStream.unsubscribe(self)



Where do Unhandled Messages Go?

Actor.Receive is a partial function, the behavior may not apply.

Unhandled messages are passed into the unhandled method:

trait Actor {

def unhandled(message: Any): Unit = message match {
case Terminated(target) => throw new DeathPactException(target)
case msg =>
context.system.eventStream.publish(UnhandledMessage(msg, sender(), self))



