
Introduction: Why Actors?

Principles of Functional Programming
Roland Kuhn



Where Actors came from

A selection of events in the history of Actors:

Carl Hewitt et al, 1973: Actors invented for research on artificial
intelligence

Gul Agha, 1986: Actor languages and communication patterns
Ericsson, 1995: first commercial use in Erlang/OTP for

telecommunications platform
Philipp Haller, 2006: implementation in Scala standard library
Jonas Bonér, 2009: creation of Akka



Threads

CPUs are not getting faster anymore, they are getting wider:

▶ multiple execution cores within one chip, sharing memory
▶ virtual cores sharing a single physical execution core



Threads

CPUs are not getting faster anymore, they are getting wider:

▶ multiple execution cores within one chip, sharing memory
▶ virtual cores sharing a single physical execution core

Programs running on the computer must feed these cores:

▶ running multiple programs in parallel (multi-tasking)
▶ running parts of the same program in parallel (multi-threading)



Example: Bank Account

class BankAccount {

private var balance = 0

def deposit(amount: Int): Unit =
if (amount > 0) balance = balance + amount

def withdraw(amount: Int): Int =
if (0 < amount && amount <= balance) {

balance = balance - amount
balance

} else throw new Error(”insufficient funds”)
}



Example: Bank Account

def withdraw(amount: Int): Int = {
val b = balance
if (0 < amount && amount <= b) {

val newBalance = b - amount
balance = newBalance
newBalance

} else {
throw new Error(”insufficient funds”)

}
}

Executing this twice in parallel can violate the invariant and lose updates.



Synchronization

Multiple threads stepping on each others’ toes:

▶ demarcate regions of code with “don’t disturb” semantics
▶ make sure that all access to shared state is protected



Synchronization

Multiple threads stepping on each others’ toes:

▶ demarcate regions of code with “don’t disturb” semantics
▶ make sure that all access to shared state is protected

Primary tools: lock, mutex, semaphore



Synchronization

Multiple threads stepping on each others’ toes:

▶ demarcate regions of code with “don’t disturb” semantics
▶ make sure that all access to shared state is protected

Primary tools: lock, mutex, semaphore
In Scala every object has a lock: obj.synchronized { ... }



Bank Account with Synchronization

class BankAccount {

private var balance = 0

def deposit(amount: Int): Unit = this.synchronized {
if (amount > 0) balance = balance + amount

}

def withdraw(amount: Int): Int = this.synchronized {
if (0 < amount && amount <= balance) {

balance = balance - amount
balance

} else throw new Error(”insufficient funds”)
}

}



Composition of Synchronized Objects

def transfer(from: BankAccount, to: BankAccount, amount: Int): Unit = {
from.synchronized {

to.synchronized {
from.withdraw(amount)
to.deposit(amount)

}
}

}



Composition of Synchronized Objects

def transfer(from: BankAccount, to: BankAccount, amount: Int): Unit = {
from.synchronized {

to.synchronized {
from.withdraw(amount)
to.deposit(amount)

}
}

}

Introduces Dead-Lock:

▶ transfer(accountA, accountB, x) in one thread
▶ transfer(accountB, accountA, y) in another thread
▶ one lock taken by each, nobody can progress



We want Non-Blocking Objects

▶ blocking synchronization introduces dead-locks
▶ blocking is bad for CPU utilization
▶ synchronous communication couples sender and receiver


