
Eventual Consistency

Principles of Functional Programming
Roland Kuhn



Eventual Consistency (1)

Strong Consistency: after an update completes all reads will return the
updated value

private var field = 0
def update(f: Int => Int): Int = synchronized {

field = f(field)
field

}
def read(): Int = synchronized { field }



Eventual Consistency (2)

Strong Consistency: after an update completes all reads will return the
updated value

Weak Consistency: after an update conditions need to be met until reads
return the update value; this is the inconsistency window

private @volatile var field = 0
def update(f: Int => Int): Future[Int] = Future {

synchronized {
field = f(field)
field

}
}
def read(): Int = field



Eventual Consistency (3)

Strong Consistency: after an update completes all reads will return the
updated value

Weak Consistency: after an update conditions need to be met until reads
return the update value; this is the inconsistency window

Eventual Consistency: once no more updates are made to an object there
is a time after which all reads return the last written value

{http://www.allthingsdistributed.com/2008/12/eventually_consistent.html}
http://www.infoq.com/articles/cap-twelve-years-later-how-the-rules-have-changed



Eventually Consistent Store (1)

case class Update(x: Int)
case object Get
case class Result(x: Int)
case class Sync(x: Int, timestamp: Long)
case object Hello

class DistributedStore extends Actor {
var peers: List[ActorRef] = Nil
var field = 0
var lastUpdate = System.currentTimeMillis()

def receive = ...
}



Eventually Consistent Store (2)

def receive = {
case Update(x) =>

field = x
lastUpdate = System.currentTimeMillis()
peers foreach (_ ! Sync(field, lastUpdate))

case Get => sender() ! Result(field)
case Sync(x, timestamp) if timestamp > lastUpdate =>

field = x
lastUpdate = timestamp

case Hello =>
peers ::= sender()
sender() ! Sync(field, lastUpdate)

}



Actors and Eventual Consistency

▶ an actor forms an island of consistency
▶ collaborating actors can at most be eventually consistent
▶ actors are not automatically eventually consistent
▶ event consistency requires eventual dissemination of all updates
▶ need to employ suitable data structures, for example CRDTs1

1Shapiro, Preguiça, Baquero, Zawirski (2011): A comprehensive study of Convergent
and Commutative Replicated Data Types, inria-00555588



An Example Data Structure

The cluster membership state is a convergent data type:

▶ directed acyclic graph of states
▶ conflicts can always be resolved locally
▶ conflict resolution is commutative


