
Lifecycle Monitoring and
The Error Kernel

Principles of Functional Programming
Roland Kuhn

Lifecycle Monitoring

The only observable transition occurs when stopping an actor:

▶ having an ActorRef implies liveness (at some earlier point)
▶ restarts are not externally visible
▶ after stop there will be no more responses

Lifecycle Monitoring

The only observable transition occurs when stopping an actor:

▶ having an ActorRef implies liveness (at some earlier point)
▶ restarts are not externally visible
▶ after stop there will be no more responses

No replies could also be due to communication failure, therefore Akka
supports Lifecycle Monitoring a.k.a. DeathWatch.

▶ an Actor registers its interest using context.watch(target)
▶ it will receive a Terminated(target) message when target stops
▶ it will not receive any direct messages from target thereafter

The DeathWatch API

trait ActorContext {
def watch(target: ActorRef): ActorRef
def unwatch(target: ActorRef): ActorRef
...

}

case class Terminated private[akka] (actor: ActorRef)
(val existenceConfirmed: Boolean, val addressTerminated: Boolean)

extends AutoReceiveMessage with PossiblyHarmful

Applying DeathWatch to Controller & Getter (1)

class Getter(url: String, depth: Int) extends Actor {
...
def receive = {

case body: String =>
for (link <- findLinks(body))
context.parent ! Controller.Check(link, depth)

context.stop(self)
case _: Status.Failure => context.stop(self)

}
}

Simply terminating when done uses DeathWatch as End-Of-Conversation.

The Children List

Each actor maintains a list of the actors it created:

▶ the child has been entered when context.actorOf returns
▶ the child has been removed when Terminated is received
▶ an actor name is available IFF there is no such child

trait ActorContext {
def children: Iterable[ActorRef]
def child(name: String): Option[ActorRef]
...

}

Applying DeathWatch to Controller & Getter (2)

class Controller extends Actor with ActorLogging {
override val supervisorStrategy = OneForOneStrategy(maxNrOfRetries = 5) {

case _: Exception => SupervisorStrategy.Restart
}
def receive = {

case Check(url, depth) =>
if (!cache(url) && depth > 0)
context.watch(context.actorOf(getterProps(url, depth - 1)))

cache += url
case Terminated(_) =>

if (context.children.isEmpty) context.parent ! Result(cache)
case ReceiveTimeout => context.children foreach context.stop

}
...

}

Lifecycle Monitoring for Fail-Over

class Manager extends Actor {
def prime(): Receive = {

val db = context.actorOf(Props[DBActor], ”db”)
context.watch(db)

{
case Terminated(‘db‘) => context.become(backup())

}
}
def backup(): Receive = { ... }
def receive = prime()

}

The Error Kernel

Keep important data near the root, delegate risk to the leaves.

▶ restarts are recursive (supervised actors are part of the state)
▶ restarts are more frequent near the leaves
▶ avoid restarting Actors with important state

Application to Receptionist (1)

▶ Always stop Controller if it has a problem.
▶ React to Terminated to catch cases where no Result was sent.
▶ Discard Terminated after Result was sent.

Application to Receptionist (1)

▶ Always stop Controller if it has a problem.
▶ React to Terminated to catch cases where no Result was sent.
▶ Discard Terminated after Result was sent.

class Receptionist extends Actor {

override def supervisorStrategy = SupervisorStrategy.stoppingStrategy

...
}

Application to Receptionist (2)

class Receptionist extends Actor {
...
def runNext(queue: Vector[Job]): Receive = {
reqNo += 1
if (queue.isEmpty) waiting
else {

val controller = context.actorOf(controllerProps, s”c$reqNo”)
context.watch(controller)
controller ! Controller.Check(queue.head.url, 2)
running(queue)

}
}

}

Application to Receptionist (3)

def running(queue: Vector[Job]): Receive = {
case Controller.Result(links) =>

val job = queue.head
job.client ! Result(job.url, links)
context.stop(context.unwatch(sender()))
context.become(runNext(queue.tail))

case Terminated(_) =>
val job = queue.head
job.client ! Failed(job.url)
context.become(runNext(queue.tail))

case Get(url) =>
context.become(enqueueJob(queue, Job(sender(), url)))

}

Interjection: the EventStream (1)

Actors can direct messages only at known addresses.
The EventStream allows publication of messages to an unknown audience.
Every actor can optionally subscribe to (parts of) the EventStream.

trait EventStream {
def subscribe(subscriber: ActorRef, topic: Class[_]): Boolean
def unsubscribe(subscriber: ActorRef, topic: Class[_]): Boolean
def unsubscribe(subscriber: ActorRef): Unit
def publish(event: AnyRef): Unit

}

Interjection: the EventStream (2)

class Listener extends Actor {
context.system.eventStream.subscribe(self, classOf[LogEvent])
def receive = {

case e: LogEvent => ...
}
override def postStop(): Unit = {

context.system.eventStream.unsubscribe(self)
}

}

Where do Unhandled Messages Go?

Actor.Receive is a partial function, the behavior may not apply.
Unhandled messages are passed into the unhandled method:

trait Actor {
...
def unhandled(message: Any): Unit = message match {

case Terminated(target) => throw new DeathPactException(target)
case msg =>

context.system.eventStream.publish(UnhandledMessage(msg, sender(), self))
}

}

