cPrL

Evaluation and Operators

Principles of Functional Programming



Classes and Substitutions

We previously defined the meaning of a function application using a
computation model based on substitution. Now we extend this model to
classes and objects.

Question: How is an instantiation of the class C(e;, ..., e,) evaluted?

Answer: The expression arguments e;, ..., e, are evaluated like the
arguments of a normal function. That's it.

The resulting expression, say, C(vi, ..., vy), is already a value.



Classes and Substitutions

Now suppose that we have a class definition,

class C(x1,...,xm){ ... def f(y1,...,yn) =b ... }

where
» The formal parameters of the class are x;, ..., x;.
» The class defines a method f with formal parameters y, ..., y,.

(The list of function parameters can be absent. For simplicity, we have
omitted the parameter types.)

Question: How is the following expression evaluated?

C(v1, cees Vi) F(Wp s oy Wy )



Classes and Substitutions (2)

Answer: The expression C(vi, ..., vy).f(wi, ..., w,) is rewritten to:

[w1/y1, ...,wn/yn][v1/x17 ey vm/xm] [C(v1 s e vm)/this] b

There are three substitutions at work here:

» the substitution of the formal parameters y,, ..., y, of the function f
by the arguments wy, ..., w,,

> the substitution of the formal parameters x,, ..., x, of the class C by
the class arguments v,, ..., vy,

» the substitution of the self reference this by the value of the object
C(Viy vvey Vi)-



Object Rewriting Examples

Rational(1, 2).numer



Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x



Object Rewriting Examples

Rational(1, 2).numer

— [1/x,2/y] [] [Rational(1,2)/this] x
1



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom



Object Rewriting Examples

Rational(1, 2).numer
— [1/x,2/y] [] [Rational(1,2)/this] x

=1

Rational(1, 2).less(Rational(2, 3))

— [1/x,2/y] [Rational(2,3)/that] [Rational(1,2)/this]
this.numer * that.denom < that.numer * this.denom

= Rational(1, 2).numer * Rational(2, 3).denom <
Rational(2, 3).numer * Rational(1l, 2).denom

—» 1 % 3<2x%2

—» true



Operators

In principle, the rational numbers defined by Rational are as natural as
integers.

But for the user of these abstractions, there is a noticeable difference:

» We write x + y, if x and y are integers, but
» We write r.add(s) if r and s are rational numbers.

In Scala, we can eliminate this difference. We proceed in two steps.



Step 1: Relaxed Identifiers

Operators such as + or < count as identifiers in Scala.

Thus, an identifier can be:

» Alphanumeric: starting with a letter, followed by a sequence of letters
or numbers

» Symbolic: starting with an operator symbol, followed by other
operator symbols.

» The underscore character ’_’ counts as a letter.

» Alphanumeric identifiers can also end in an underscore, followed by
some operator symbols.

Examples of identifiers:

x1 * +?%& vector_++ counter_=



Step 1: Relaxed Identifiers

Since operators are identifiers, it is possible to use them as method names.
Eg.

class Rational
def + (x: Rational): Rational = ...
def < (x: Rational): Rational



Step 2: Infix Notation

An operator method with a single parameter can be used as an infix
operator.

A normal method with a single parameter can also be used as an infix

operator if it is declared Qinfix. E.g.

class Rational
@infix def max(that Rational): Rational = ...

It is therefore possible to write
r+s r.+(s)

r<s /* in place of =*/ r.<(s)
r max s r.max(s)



Operators for Rationals

A more natural definition of class Rational:

class Rational(x: Int, y: Int)

private def gcd(a: Int, b: Int): Int =
if b == 0 then a else gcd(b, a % b)

private val g = gcd(x, y)

def numer = x / g

def denom =y / g

def + (r: Rational) = Rational(
numer * r.denom + r.numer * denom,
denom * r.denom)

def - (r: Rational): Rational

def * (r: Rational): Rational



Operators for Rationals

This allows rational numbers to be used like Int or Double:

val x = Rational(1, 2)
val y = Rational(1, 3)
X * Xty *y



Precedence Rules

The precedence of an operator is determined by its first character.

The following table lists the characters in increasing order of priority
precedence:

(all letters)
|

A
&
<
=1
+ -

*/ %
(all other special characters)



Exercise

Provide a fully parenthesized version of
a+tb*"c?”dlessa==>b | c

Every binary operation needs to be put into parentheses, but the structure
of the expression should not change.



