
Currying

Principles of Functional Programming



Motivation

Look again at the summation functions:

def sumInts(a: Int, b: Int) = sum(x => x, a, b)

def sumCubes(a: Int, b: Int) = sum(x => x * x * x, a, b)

def sumFactorials(a: Int, b: Int) = sum(fact, a, b)

Question

Note that a and b get passed unchanged from sumInts and sumCubes into
sum.
Can we be even shorter by getting rid of these parameters?



Functions Returning Functions

Let’s rewrite sum as follows.

def sum(f: Int => Int): (Int, Int) => Int =

def sumF(a: Int, b: Int): Int =

if a > b then 0

else f(a) + sumF(a + 1, b)

sumF

sum is now a function that returns another function.
The returned function sumF applies the given function parameter f and
sums the results.



Stepwise Applications

We can then define:

def sumInts = sum(x => x)

def sumCubes = sum(x => x * x * x)

def sumFactorials = sum(fact)

These functions can in turn be applied like any other function:

sumCubes(1, 10) + sumFactorials(10, 20)



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, …
middlemen?
Of course:

sum (cube) (1, 10)



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, …
middlemen?
Of course:

sum (cube) (1, 10)

▶ sum(cube) applies sum to cube and returns the sum of cubes function.
▶ sum(cube) is therefore equivalent to sumCubes.
▶ This function is next applied to the arguments (1, 10).



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, …
middlemen?
Of course:

sum (cube) (1, 10)

▶ sum(cube) applies sum to cube and returns the sum of cubes function.
▶ sum(cube) is therefore equivalent to sumCubes.
▶ This function is next applied to the arguments (1, 10).

Generally, function application associates to the left:

sum(cube)(1, 10) == (sum (cube)) (1, 10)



Multiple Parameter Lists

The definition of functions that return functions is so useful in functional
programming that there is a special syntax for it in Scala.
For example, the following definition of sum is equivalent to the one with
the nested sumF function, but shorter:

def sum(f: Int => Int)(a: Int, b: Int): Int =

if a > b then 0 else f(a) + sum(f)(a + 1, b)



Expansion of Multiple Parameter Lists

In general, a definition of a function with multiple parameter lists

def f(ps1)...(psn) = E

where n > 1, is equivalent to

def f(ps1)...(psn−1) = {def g(psn) = E; g}

where g is a fresh identifier. Or for short:

def f(ps1)...(psn−1) = (psn ⇒ E)



Expansion of Multiple Parameter Lists (2)

By repeating the process n times

def f(ps1)...(psn−1)(psn) = E

is shown to be equivalent to

def f = (ps1 ⇒ (ps2 ⇒ ...(psn ⇒ E)...))

This style of definition and function application is called currying, named
for its instigator, Haskell Brooks Curry (1900-1982), a twentieth century
logician.
In fact, the idea goes back even further to Schönfinkel and Frege, but the
term “currying” has stuck.



More Function Types

Question: Given,

def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?



More Function Types

Question: Given,

def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?
Answer:

(Int => Int) => (Int, Int) => Int

Note that functional types associate to the right. That is to say that

Int => Int => Int

is equivalent to

Int => (Int => Int)



Exercise

1. Write a product function that calculates the product of the values of
a function for the points on a given interval.

2. Write factorial in terms of product.
3. Can you write a more general function, which generalizes both sum

and product?


