cPrL

Functions and Data

Principles of Functional Programming

Functions and Data

In this section, we'll learn how functions create and encapsulate data
structures.

Example

Rational Numbers

We want to design a package for doing rational arithmetic.
A rational number f/ is represented by two integers:

> its numerator x, and
> its denominator y.

Rational Addition

Suppose we want to implement the addition of two rational numbers.

def addRationalNumerator(nl: Int, d1: Int, n2: Int, d2: Int): Int
def addRationalDenominator(nl: Int, d1: Int, n2: Int, d2: Int): Int
but it would be difficult to manage all these numerators and denominators.

A better choice is to combine the numerator and denominator of a
rational number in a data structure.

Classes

In Scala, we do this by defining a class:

class Rational(x: Int, y: Int)
def numer = x
def denom =y

This definition introduces two entities:

» A new type, named Rational.
> A constructor Rational to create elements of this type.

Scala keeps the names of types and values in different namespaces. So
there's no conflict between the two entities named Rational.

Objects

We call the elements of a class type objects.
We create an object by calling the constructor of the class:

Example

Rational (1, 2)

Members of an Object

Objects of the class Rational have two members, numer and denom.

We select the members of an object with the infix operator ' (like in
Java).

Example

val x = Rational(1, 2) > x: Rational = Rational@2abe0e27
X.numer > 1
x.denom > 2

Rational Arithmetic

We can now define the arithmetic functions that implement the standard

rules.

moon nido+nad;
di do dids
ny _ ny __ nido—nad;
di do did2
no o on2 _ nmng

d do T did>
monz n dy

di/ da dins

% = % iff nidy = ding

Implementing Rational Arithmetic

def addRational(r: Rational, s: Rational): Rational =
Rational(
r.numer * s.denom + s.numer * r.denom,
r.denom * s.denom)

def makeString(r: Rational): String =

” ”»

s r.numer}/${r.denom

makeString(addRational (Rational(1, 2), Rational(2, 3))) > 7/6

Note: s”...” in makeString is an interpolated string, with values r.numer
and r.denom in the places enclosed by ${...3.

Methods

One can go further and also package functions operating on a data
abstraction in the data abstraction itself.

Such functions are called methods.

Example

Rational numbers now would have, in addition to the functions numer and
denom, the functions add, sub, mul, div, equal, toString.

Methods for Rationals

Here's a possible implementation:

class Rational(x: Int, y: Int)
def numer = x
def denom =y
def add(r: Rational) =
Rational(numer * r.denom + r.numer * denom,
denom * r.denom)
def mul(r: Rational) = ...

override def toString = s”$numer/$denom”
end Rational

Remark: the modifier override declares that toString redefines a method
that already exists (in the class java.lang.Object).

Calling Methods

Here is how one might use the new Rational abstraction:

val x = Rational(l, 3)
val y = Rational(5, 7)
val z = Rational(3, 2)
x.add(y) .mul(z)

Exercise

1. In your worksheet, add a method neg to class Rational that is used
like this:

X.neg

2. Add a method sub to subtract two rational numbers.

3. With the values of x, y, z as given in the previous slide, what is the
result of

X -y -z

