cPrL

Currying

Principles of Functional Programming



Motivation

Look again at the summation functions:

def sumInts(a: Int, b: Int) = sum(x => x, a, b)
def sumCubes(a: Int, b: Int) = sum(x => X * X * X, a, b)
def sumFactorials(a: Int, b: Int)

sum(fact, a, b)
Question

Note that a and b get passed unchanged from sumInts and sumCubes into
sum.

Can we be even shorter by getting rid of these parameters?



Functions Returning Functions

Let's rewrite sum as follows.

def sum(f: Int => Int): (Int, Int) => Int =
def sumF(a: Int, b: Int): Int =
if a > b then 0
else f(a) + sumF(a + 1, b)
sumF

sum is now a function that returns another function.

The returned function sumF applies the given function parameter f and
sums the results.



Stepwise Applications

We can then define:

def sumInts = sum(x => Xx)

def sumCubes = sum(x => X * X * X)

def sumFactorials = sum(fact)
These functions can in turn be applied like any other function:

sumCubes(1, 10) + sumFactorials(10, 20)



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, ..

middlemen?

Of course:

sum (cube) (1, 10)



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, ..
middlemen?

Of course:

sum (cube) (1, 10)

» sum(cube) applies sum to cube and returns the sum of cubes function.
» sum(cube) is therefore equivalent to sumCubes.

» This function is next applied to the arguments (1, 10).



Consecutive Stepwise Applications

In the previous example, can we avoid the sumInts, sumCubes, ..
middlemen?

Of course:

sum (cube) (1, 10)

» sum(cube) applies sum to cube and returns the sum of cubes function.
» sum(cube) is therefore equivalent to sumCubes.

» This function is next applied to the arguments (1, 10).
Generally, function application associates to the left:

sum(cube) (1, 10) == (sum (cube)) (1, 10)



Multiple Parameter Lists

The definition of functions that return functions is so useful in functional
programming that there is a special syntax for it in Scala.

For example, the following definition of sum is equivalent to the one with
the nested sumF function, but shorter:

def sum(f: Int => Int)(a: Int, b: Int): Int =
if a > b then 0 else f(a) + sum(f)(a + 1, b)



Expansion of Multiple Parameter Lists

In general, a definition of a function with multiple parameter lists

def f(pst)...(psn) = E

where n > 1, is equivalent to

def f(psi)...(psn—1) = {def g(ps,) = E; g}

where g is a fresh identifier. Or for short:

def f(ps1)...(psn—1) = (psn = E)



Expansion of Multiple Parameter Lists (2)

By repeating the process n times
def f(psi)...(psn—1)(psn) = E
is shown to be equivalent to

def f = (ps; = (ps; = ...(psn = E)...))

This style of definition and function application is called currying, named
for its instigator, Haskell Brooks Curry (1900-1982), a twentieth century
logician.

In fact, the idea goes back even further to Schonfinkel and Frege, but the
term “currying” has stuck.



More Function Types

Question: Given,

def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?



More Function Types

Question: Given,
def sum(f: Int => Int)(a: Int, b: Int): Int = ...

What is the type of sum ?

Answer:
(Int => Int) => (Int, Int) => Int
Note that functional types associate to the right. That is to say that
Int => Int => Int
is equivalent to

Int => (Int => Int)



Exercise

1. Write a product function that calculates the product of the values of
a function for the points on a given interval.

2. Write factorial in terms of product.

3. Can you write a more general function, which generalizes both sum
and product?



