
Higher-Order Functions

Principles of Functional Programming



Higher-Order Functions

Functional languages treat functions as first-class values.
This means that, like any other value, a function can be passed as a
parameter and returned as a result.
This provides a flexible way to compose programs.
Functions that take other functions as parameters or that return functions
as results are called higher order functions.



Example:

Take the sum of the integers between a and b:

def sumInts(a: Int, b: Int): Int =

if a > b then 0 else a + sumInts(a + 1, b)

Take the sum of the cubes of all the integers between a and b :

def cube(x: Int): Int = x * x * x

def sumCubes(a: Int, b: Int): Int =

if a > b then 0 else cube(a) + sumCubes(a + 1, b)



Example (ctd)

Take the sum of the factorials of all the integers between a and b :

def sumFactorials(a: Int, b: Int): Int =

if a > b then 0 else fact(a) + sumFactorials(a + 1, b)

These are special cases of
b∑

n=a
f(n)

for different values of f.
Can we factor out the common pattern?



Summing with Higher-Order Functions

Let’s define:

def sum(f: Int => Int, a: Int, b: Int): Int =

if a > b then 0

else f(a) + sum(f, a + 1, b)

We can then write:

def sumInts(a: Int, b: Int) = sum(id, a, b)

def sumCubes(a: Int, b: Int) = sum(cube, a, b)

def sumFactorials(a: Int, b: Int) = sum(fact, a, b)

where

def id(x: Int): Int = x

def cube(x: Int): Int = x * x * x

def fact(x: Int): Int = if x == 0 then 1 else x * fact(x - 1)



Function Types

The type A => B is the type of a function that takes an argument of type A

and returns a result of type B.
So, Int => Int is the type of functions that map integers to integers.



Anonymous Functions

Passing functions as parameters leads to the creation of many small
functions.

▶ Sometimes it is tedious to have to define (and name) these functions
using def.

Compare to strings: We do not need to define a string using def. Instead
of

def str = ”abc”; println(str)

We can directly write

println(”abc”)

because strings exist as literals. Analogously we would like function
literals, which let us write a function without giving it a name.
These are called anonymous functions.



Anonymous Function Syntax

Example: A function that raises its argument to a cube:

(x: Int) => x * x * x

Here, (x: Int) is the parameter of the function, and x * x * x is it’s body.

▶ The type of the parameter can be omitted if it can be inferred by the
compiler from the context.

If there are several parameters, they are separated by commas:

(x: Int, y: Int) => x + y



Anonymous Functions are Syntactic Sugar

An anonymous function (x1 : T1, ..., xn : Tn) ⇒ E can always be expressed
using def as follows:

def f(x1 : T1, ..., xn : Tn) = E; f

where f is an arbitrary, fresh name (that’s not yet used in the program).

▶ One can therefore say that anonymous functions are syntactic sugar.



Summation with Anonymous Functions

Using anonymous functions, we can write sums in a shorter way:

def sumInts(a: Int, b: Int) = sum(x => x, a, b)

def sumCubes(a: Int, b: Int) = sum(x => x * x * x, a, b)



Exercise

The sum function uses linear recursion. Write a tail-recursive version by
replacing the ???s.

def sum(f: Int => Int, a: Int, b: Int): Int =

def loop(a: Int, acc: Int): Int =

if ??? then ???

else loop(???, ???)

loop(???, ???)


