
1

Why FP?

■ FP has lots of methodological advantages:

■ Fewer errors

■ Better modularity

■ Higher-level abstractions

■ Shorter code

■ Increased developer productivity

■ But these alone are not enough for mainstream adoption (after all FP has
been around for 50 years)

■ Need a catalyzer, something that sparks initial adoption until the other
advantages become clear to everyone.

FP on the Rise
In Computer Science:

Compare #attendees of OOP conferences: OOPSLA, ECOOP
with FP conference: ICFP

2000 : ECOOP ~ 3 x ICFP

OOPSLA ~ 10 x ICFP

2018 : ICFP ~ 3 x ECOOP
OOPSLA stopped existing as independent conference

Developer interest: a million sign-ups for the courses of the Functional
Programming in Scala specialization

2

3

To find out more:

A Catalyzer
§ Two forces driving software complexity:
•Multicore (= parallel programming)
• Cloud computing (= distributed programming)

§Current languages and frameworks have trouble keeping up (locks/threads don’t scale)
§Need better tools with the right level of abstraction

4

Concurrency and Parallelism

Parallel programming Execute programs faster on
parallel hardware.

Concurrent programming Manage concurrent execution
threads explicitly.

Both are too hard!

5

The Root of The Problem
Non-determinism caused by
concurrent threads accessing
shared mutable state.

It helps to encapsulate state in actors
or transactions, but the fundamental
problem stays the same.

So,
non-determinism = parallel processing + mutable state

To get deterministic processing, avoid the mutable state!

Avoiding mutable state means programming functionally.

6

var x = 0
async { x = x + 1 }
async { x = x * 2 }

// can give 0, 1, 2

Space vs Time

7

Time (imperative/concurrent)

Space (functional/parallel)

8

The Essence of Functional
Programming

Concentrate on transformations of immutable values

instead of stepwise modifications of mutable state.

