Why FP?

m FP has lots of methodological advantages:
m Fewer errors
m Better modularity
m Higher-level abstractions
m Shorter code
m Increased developer productivity

m But these alone are not enough for mainstream adoption (after all FP has
been around for 50 years)

m Need a catalyzer, something that sparks initial adoption until the other
advantages become clear to everyone.

FP on the Rise

In Computer Science:

Compare #attendees of OOP conferences: OOPSLA, ECOOP
with FP conference: ICFP

2000 : ECOOP ~ 3 x ICFP
OOPSLA ~ 10 x ICFP

2018 ICFP ~ 3 x ECOOP
OOPSLA stopped existing as independent conference

Developer interest: a million sign-ups for the courses of the Functional
Programming in Scala specialization

COUrSerdl | Explore Courses

B

ECOLE POLYT K’HNI(LJ?
FEDERALE DE LAUSANNE

Functional Programming
Principles in Scala

Martin Odersky

Learn about functional programming, and how it can be effectively
combined with object-oriented programming. Gain practice in writing
clean functional code, using the Scala programming language.

Session(s):

Mar 25th 2013 (7 weeks long) W

Sep 18th 2012 (7 weeks long) View class archive

Categories Universities About v | Martin Odersky ~

o c\‘ Ss Er
e

Na
s treey _

!

x) I ne

B

\\L\ = —
‘*c‘\\ X \Watch intro video o ¥
?\';r\ »
{ D) :

I,\‘.

4,700 3.7k K 5.3k

A Catalyzer

® Two forces driving software complexity:

® Multicore (= parallel programming)

® Cloud computing (= distributed programming)
® Current languages and frameworks have trouble keeping up (locks/threads don’t scale)
® Need better tools with the right level of abstraction

1.E+07

1.E+06

1.E+05 A

1.E+04 A

1.E+03 A

1.E+02 A

1.E+01 A

1.E+00 A

15 Years of exponential growth ~2x year has ended

® Cores

* Transistors (in Thousands)
® Frequency (MHz)

1.E-01
19

70

1975

1980

1985

1990

1995

2000

2005

2010

Concurrency and Parallelism

Parallel programming Execute programs faster on
parallel hardware.

Concurrent programming Manage concurrent execution
threads explicitly.

Both are too hard!

The Root of The Problem

Non-determinism caused by

. var x = 0
concurrent threads accessing async { x = x + 1)
shared mutable state. d B
async { x = x ¥ 2 }

It helps to encapsulate state in actors
or transactions, but the fundamental

problem stays the same. // can give 0, 1, 2

So,
non-determinism = parallel processing + mutable state

To get deterministic processing, avoid the mutable state!

Avoiding mutable state means programming functionally.

Space vs Time

A

A

¢ Space (functional/parallel)

A

>

Time (imperative/concurrent)

The Essence of Functional

Concentrate on transformations of immutable values

instead of stepwise modifications of mutable state.

