Why FP?

m FP has lots of methodological advantages:
m Fewer errors
m Better modularity
m Higher-level abstractions
m Shorter code
m Increased developer productivity

m But these alone are not enough for mainstream adoption (after all FP has
been around for 50 years)

m Need a catalyzer, something that sparks initial adoption until the other
advantages become clear to everyone.




FP on the Rise

In Computer Science:

Compare #attendees of OOP conferences: OOPSLA, ECOOP
with FP conference: ICFP

2000 : ECOOP ~ 3 x ICFP
OOPSLA ~ 10 x ICFP

2018 ICFP ~ 3 x ECOOP
OOPSLA stopped existing as independent conference

Developer interest: a million sign-ups for the courses of the Functional
Programming in Scala specialization
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Learn about functional programming, and how it can be effectively
combined with object-oriented programming. Gain practice in writing
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A Catalyzer

® Two forces driving software complexity:

® Multicore (= parallel programming)

® Cloud computing (= distributed programming)
® Current languages and frameworks have trouble keeping up (locks/threads don’t scale)
® Need better tools with the right level of abstraction
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Concurrency and Parallelism

Parallel programming Execute programs faster on
parallel hardware.

Concurrent programming Manage concurrent execution
threads explicitly.

Both are too hard!



The Root of The Problem

Non-determinism caused by

. var x = 0
concurrent threads accessing async { x = x + 1)
shared mutable state. d B
async { x = x ¥ 2 }

It helps to encapsulate state in actors
or transactions, but the fundamental

problem stays the same. // can give 0, 1, 2

So,
non-determinism =  parallel processing + mutable state

To get deterministic processing, avoid the mutable state!

Avoiding mutable state means programming functionally.
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The Essence of Functional

Concentrate on transformations of immutable values

instead of stepwise modifications of mutable state.



