
Functional Programming
Final Exam Solution
Friday, December 21 2018

Exercise 1: Pure Functional Programming (10 points)

Non tail recursive suolution (7 points)

de f f latMap [T] (l i s t : L i s t [T] , f : T => L i s t [T]) : L i s t [T] = {
l i s t match {

case x : : xs => f (x) : : : f latMap (xs , f)
case Ni l => Ni l

}
}

Tail recursive suolution (10 points)

de f f latMap [T] (l i s t : L i s t [T] , f : T => L i s t [T]) : L i s t [T] = {
@ta i l r e c de f r e v e r s e (l s : L i s t [T] , acc : L i s t [T]) : L i s t [T] = {

l s match {
case x : : xs => rev e r s e (xs , x : : acc)
case Ni l => acc

}
}
@ta i l r e c de f r e c (l s : L i s t [T] , acc : L i s t [T]) : L i s t [T] = {

l s match {
case x : : xs => rec (xs , f (x) : : : acc)
case Ni l => acc

}
}
rec (r e v e r s e (l i s t , N i l) , N i l)

}

Exercise 2: State (10 points)

1. f1(n): Y
all operations used are RT (referentially transparent)

2. f2(n, m): Y
all operations used are RT

3. f3(xs, _ + _): Y
all operations used are RT and the mutable variables are local

4. f3(xs, _ + c.get + _): N
c.get is not RT

5. f4(): Y
all operations used are RT

6. f5(): N
println is not RT

7. f6(c): N
c. inc is not RT

8. f6(new Counter): N
the returned Counter holds state

9. f6(new Counter).get: Y
the Counter is local to the expression (its state does not leak)

10. f7(c): N
c.get is not RT

11. f8(n)(c): N
c. inc is not RT

12. f8(n): Y
the function is not fully applied and the partial application has no state

13. f8(c.get): N
c.get is not RT

14. f9((x:Int) => (), c.get): Y
while c.get is not RT, its result is discarded and does not influence the program

15. f9(f1 , f1(c.get)): N
c.get is not RT

16. f9(x => y => println(x+y), 0): Y
the function is not fully applied and the partial application has no state

17. f10(f1): Y
all operations used are RT and the local cache is not observable

18. f10(x => c.inc.get + x): N
c. int and c.get are not RT

19. f10(x => c.get + x): N
c.get is not RT

20. f11: Y
the local counter’s state is never changed, so the function passed to f10 in f11 is RT, and f11 is RT

2

Exercise 3: Lambda Calculus (10 points)

3.1

de f (succ n)
(lambda (f x) (f (n f x)))

3.2

de f (s i z e l i s t)
(l i s t

ze ro
(lambda (h t) (succ (s i z e t)))

)

Exercise 4: Streams (10 points)

de f t rans (s r c : Stream [Stream [St r ing]] , base : Int , n : Int) : Stream [St r ing] =
s r c . drop (n − 1) . head . drop (base − 1) . head #:: t rans (src , base , n + 1)

de f t ransposed (s r c : Stream [Stream [St r ing]] , x : Int , y : Int) : Stream [Stream [St r ing]] =
trans (src , x , y) #:: t ransposed (src , x + 1 , y)

de f t ranspose (s r c : Stream [Stream [St r ing]]) : Stream [Stream [St r ing]] =
transposed (src , 1 , 1)

3

	3.1
	3.2

