
Conditionals and Value Definitions

Principles of Functional Programming

Conditional Expressions

To express choosing between two alternatives, Scala has a conditional
expression if-then-else.
It resembles an if-else in Java, but is used for expressions, not
statements.
Example:

with def abs(x: Int) = if x >= 0 then x else -x

x >= 0 is a predicate, of type Boolean.

Boolean Expressions

Boolean expressions b can be composed of

true false // Constants

!b // Negation

b && b // Conjunction

b || b // Disjunction

and of the usual comparison operations:

e <= e, e >= e, e < e, e > e, e == e, e != e

Rewrite rules for Booleans

Here are reduction rules for Boolean expressions (e is an arbitrary
expression):

!true --> false

!false --> true

true && e --> e

false && e --> false

true || e --> true

false || e --> e

Note that && and || do not always need their right operand to be
evaluated.
We say, these expressions use “short-circuit evaluation”.

Exercise: Formulate rewrite rules for if-then-else

Value Definitions

We have seen that function parameters can be passed by value or be
passed by name.
The same distinction applies to definitions.
The def form is “by-name”, its right hand side is evaluated on each use.
There is also a val form, which is “by-value”. Example:

val x = 2

val y = square(x)

The right-hand side of a val definition is evaluated at the point of the
definition itself.
Afterwards, the name refers to the value.
For instance, y above refers to 4, not square(2).

Value Definitions and Termination

The difference between val and def becomes apparent when the right
hand side does not terminate. Given

def loop: Boolean = loop

A definition

def x = loop

is OK, but a definition

val x = loop

will lead to an infinite loop.

Exercise

Write functions and and or such that for all argument expressions x and y:

and(x, y) == x && y

or(x, y) == x || y

(do not use || and && in your implementation)
What are good operands to test that the equalities hold?

