
Blocks and Lexical Scope

Principles of Functional Programming



Nested functions

It’s good functional programming style to split up a task into many small
functions.
But the names of functions like sqrtIter, improve, and isGoodEnough

matter only for the implementation of sqrt, not for its usage.
Normally we would not like users to access these functions directly.
We can achieve this and at the same time avoid “name-space pollution”
by putting the auxciliary functions inside sqrt.



The sqrt Function, Take 2

def sqrt(x: Double) = {

def sqrtIter(guess: Double, x: Double): Double =

if isGoodEnough(guess, x) then guess

else sqrtIter(improve(guess, x), x)

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0, x)

}



The sqrt Function, Take 2

def sqrt(x: Double) =

def sqrtIter(guess: Double, x: Double): Double =

if isGoodEnough(guess, x) then guess

else sqrtIter(improve(guess, x), x)

def improve(guess: Double, x: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double, x: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0, x)

Here, braces are optional for indented code.



Blocks in Scala

▶ A block is delimited by braces { ... }.
{ val x = f(3)

x * x

}

▶ It contains a sequence of definitions or expressions.
▶ The last element of a block is an expression that defines its value.
▶ This return expression can be preceded by auxiliary definitions.
▶ Blocks are themselves expressions; a block may appear everywhere an

expression can.
▶ Braces are optional (i.e. implied) around a correctly indented

expression that appears after =, then, else, …



Blocks and Visibility

val x = 0

def f(y: Int) = y + 1

val result =

val x = f(3)

x * x

▶ The definitions inside a block are only visible from within the block.
▶ The definitions inside a block shadow definitions of the same names

outside the block.



Exercise: Scope Rules

Question: What is the value of result in the following program?

val x = 0

def f(y: Int) = y + 1

val result = {

val x = f(3)

x * x

} + x

Possible answers:

O 0

O 16

O 32

O reduction does not terminate



Lexical Scoping

Definitions of outer blocks are visible inside a block unless they are
shadowed.
Therefore, we can simplify sqrt by eliminating redundant occurrences of
the x parameter, which means everywhere the same thing:



The sqrt Function, Take 3

def sqrt(x: Double) =

def sqrtIter(guess: Double): Double =

if isGoodEnough(guess) then guess

else sqrtIter(improve(guess))

def improve(guess: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0)



End Markers

With heavily indented code it is sometimes hard to see where a construct
ends.
End markers are a tool to make this explicit.

def f() =

...

...

...

end f

▶ And end marker is followed by the name that’s defined in the
definition that ends at this point.

▶ It must align with the opening keyword (def in this case).



The sqrt Function, Take 4

def sqrt(x: Double) =

def sqrtIter(guess: Double): Double =

if isGoodEnough(guess) then guess

else sqrtIter(improve(guess))

def improve(guess: Double) =

(guess + x / guess) / 2

def isGoodEnough(guess: Double) =

abs(square(guess) - x) < 0.001

sqrtIter(1.0)

end sqrt



Semicolons

In Scala, semicolons at the end of lines are in most cases optional
You could write

val x = 1;

but most people would omit the semicolon.
On the other hand, if there are more than one statements on a line, they
need to be separated by semicolons:

val y = x + 1; y * y



Summary

You have seen simple elements of functional programing in Scala.

▶ arithmetic and boolean expressions
▶ conditional expressions if-then-else
▶ functions with recursion
▶ nesting and lexical scope

You have learned the difference between the call-by-name and
call-by-value evaluation strategies.
You have learned a way to reason about program execution: reduce
expressions using the substitution model.
This model will be an important tool for the coming sessions.


