{
 "cells": [
  {
   "cell_type": "markdown",
   "id": "0e44bd91-51a7-4c56-92e5-c196be7941af",
   "metadata": {},
   "source": [
    "# [Matrix Analysis'24]: test your installation\n",
    "[matrix analysis'24]: https://github.com/epfl-lts2/matrix-analysis-2024\n",
    "\n",
    "[EPFL LTS2](https://lts2.epfl.ch)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "81936a03-dd2d-4348-af93-828a107ec5c1",
   "metadata": {},
   "source": [
    "This is a mini \"test\" Jupyter notebook to make sure the main packages we'll use are installed.\n",
    "Run it after following the [installation instructions](https://github.com/epfl-lts2/matrix-analysis-2024#installation)."
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2dc4d30c-4162-4347-9ea1-7bc5249c81ee",
   "metadata": {},
   "source": [
    "## Standalone dependencies\n",
    "\n",
    "If you get a `command not found` error, try to run `conda install <package-name>` (in the `matrix-analysis-2024` environment, i.e., after `conda activate matrix-analysis-2024`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4737f499-386c-463b-8630-85e7bfac5acc",
   "metadata": {},
   "outputs": [],
   "source": [
    "!conda --version # this will fail on Noto "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ec0596c7-967b-4399-81da-6602bbdcc17d",
   "metadata": {},
   "outputs": [],
   "source": [
    "!git --version"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0862c7bf-8ae0-4f9a-b96a-1698e59e4aed",
   "metadata": {},
   "outputs": [],
   "source": [
    "from platform import python_version\n",
    "\n",
    "print(python_version())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41138a01-2426-4cbf-9661-a7e780f06ef4",
   "metadata": {},
   "outputs": [],
   "source": [
    "!jupyter --version\n",
    "\n",
    "!ipython --version\n",
    "\n",
    "!jupyter-lab --version\n",
    "!jupyter-notebook --version"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e3d1d1b1-f09f-44ad-ba14-726451d9898b",
   "metadata": {},
   "source": [
    "## Python packages\n",
    "\n",
    "If you get a `ModuleNotFoundError` error, try to run `conda install <package-name>` (in the `matrix-analysis-2023` environment, i.e., after `conda activate matrix-analysis-2024`)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a1141b09-2122-4862-8b69-2c9d40187662",
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np\n",
    "np.__version__"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9537241-0f85-4d72-a62f-039826aa7f8c",
   "metadata": {},
   "outputs": [],
   "source": [
    "import scipy\n",
    "scipy.__version__"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3860668d-bb4c-4121-94d5-f4655167afc2",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib as mpl\n",
    "mpl.__version__"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "08ef3716-82c6-4d00-bdb8-e9d3225c8b69",
   "metadata": {},
   "source": [
    "## Small test"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0aa07bd9-448b-4ceb-a3d8-15109cb439e1",
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "734b2128-a529-491b-b75e-71874db8de71",
   "metadata": {},
   "outputs": [],
   "source": [
    "import matplotlib.pyplot as plt\n",
    "\n",
    "def plot_vect(x, b, xlim, ylim):\n",
    "    '''\n",
    "    function to plot two vectors, \n",
    "    x - the original vector\n",
    "    b - the transformed vector\n",
    "    xlim - the limit for x\n",
    "    ylim - the limit for y\n",
    "    '''\n",
    "    plt.figure(figsize = (10, 6))\n",
    "    plt.quiver(0,0,x[0],x[1],\\\n",
    "        color='k',angles='xy',\\\n",
    "        scale_units='xy',scale=1,\\\n",
    "        label='Original vector')\n",
    "    plt.quiver(0,0,b[0],b[1],\\\n",
    "        color='g',angles='xy',\\\n",
    "        scale_units='xy',scale=1,\\\n",
    "        label ='Transformed vector')\n",
    "    plt.xlim(xlim)\n",
    "    plt.ylim(ylim)\n",
    "    plt.xlabel('X')\n",
    "    plt.ylabel('Y')\n",
    "    plt.legend()\n",
    "    plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c493443b-930d-49ba-ae19-823e5dae362c",
   "metadata": {},
   "outputs": [],
   "source": [
    "A = np.array([[2, 0],[0, 1]])\n",
    "\n",
    "x = np.array([1, 1])\n",
    "b = np.dot(A, x.T)\n",
    "plot_vect(x,b,(0,3),(0,2))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c6002c2a-1d9c-4ca3-aa11-7f4b5cf0c30a",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.13"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}